| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poinxp | Unicode version | ||
| Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
| Ref | Expression |
|---|---|
| poinxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 495 |
. . . . . . . 8
| |
| 2 | brinxp 4426 |
. . . . . . . 8
| |
| 3 | 1, 1, 2 | syl2anc 403 |
. . . . . . 7
|
| 4 | 3 | notbid 624 |
. . . . . 6
|
| 5 | brinxp 4426 |
. . . . . . . . 9
| |
| 6 | 5 | adantr 270 |
. . . . . . . 8
|
| 7 | brinxp 4426 |
. . . . . . . . 9
| |
| 8 | 7 | adantll 459 |
. . . . . . . 8
|
| 9 | 6, 8 | anbi12d 456 |
. . . . . . 7
|
| 10 | brinxp 4426 |
. . . . . . . 8
| |
| 11 | 10 | adantlr 460 |
. . . . . . 7
|
| 12 | 9, 11 | imbi12d 232 |
. . . . . 6
|
| 13 | 4, 12 | anbi12d 456 |
. . . . 5
|
| 14 | 13 | ralbidva 2364 |
. . . 4
|
| 15 | 14 | ralbidva 2364 |
. . 3
|
| 16 | 15 | ralbiia 2380 |
. 2
|
| 17 | df-po 4051 |
. 2
| |
| 18 | df-po 4051 |
. 2
| |
| 19 | 16, 17, 18 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-po 4051 df-xp 4369 |
| This theorem is referenced by: soinxp 4428 |
| Copyright terms: Public domain | W3C validator |