ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poirr2 Unicode version

Theorem poirr2 4737
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
poirr2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )

Proof of Theorem poirr2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4657 . . . 4  |-  Rel  (  _I  |`  A )
2 relin2 4474 . . . 4  |-  ( Rel  (  _I  |`  A )  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
31, 2mp1i 10 . . 3  |-  ( R  Po  A  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
4 df-br 3786 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  <. x ,  y
>.  e.  ( R  i^i  (  _I  |`  A ) ) )
5 brin 3832 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  ( x R y  /\  x (  _I  |`  A )
y ) )
64, 5bitr3i 184 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  <-> 
( x R y  /\  x (  _I  |`  A ) y ) )
7 vex 2604 . . . . . . . . 9  |-  y  e. 
_V
87brres 4636 . . . . . . . 8  |-  ( x (  _I  |`  A ) y  <->  ( x  _I  y  /\  x  e.  A ) )
9 poirr 4062 . . . . . . . . . . 11  |-  ( ( R  Po  A  /\  x  e.  A )  ->  -.  x R x )
107ideq 4506 . . . . . . . . . . . . 13  |-  ( x  _I  y  <->  x  =  y )
11 breq2 3789 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x R x  <->  x R
y ) )
1210, 11sylbi 119 . . . . . . . . . . . 12  |-  ( x  _I  y  ->  (
x R x  <->  x R
y ) )
1312notbid 624 . . . . . . . . . . 11  |-  ( x  _I  y  ->  ( -.  x R x  <->  -.  x R y ) )
149, 13syl5ibcom 153 . . . . . . . . . 10  |-  ( ( R  Po  A  /\  x  e.  A )  ->  ( x  _I  y  ->  -.  x R y ) )
1514expimpd 355 . . . . . . . . 9  |-  ( R  Po  A  ->  (
( x  e.  A  /\  x  _I  y
)  ->  -.  x R y ) )
1615ancomsd 265 . . . . . . . 8  |-  ( R  Po  A  ->  (
( x  _I  y  /\  x  e.  A
)  ->  -.  x R y ) )
178, 16syl5bi 150 . . . . . . 7  |-  ( R  Po  A  ->  (
x (  _I  |`  A ) y  ->  -.  x R y ) )
1817con2d 586 . . . . . 6  |-  ( R  Po  A  ->  (
x R y  ->  -.  x (  _I  |`  A ) y ) )
19 imnan 656 . . . . . 6  |-  ( ( x R y  ->  -.  x (  _I  |`  A ) y )  <->  -.  (
x R y  /\  x (  _I  |`  A ) y ) )
2018, 19sylib 120 . . . . 5  |-  ( R  Po  A  ->  -.  ( x R y  /\  x (  _I  |`  A ) y ) )
2120pm2.21d 581 . . . 4  |-  ( R  Po  A  ->  (
( x R y  /\  x (  _I  |`  A ) y )  ->  <. x ,  y
>.  e.  (/) ) )
226, 21syl5bi 150 . . 3  |-  ( R  Po  A  ->  ( <. x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  ->  <. x ,  y
>.  e.  (/) ) )
233, 22relssdv 4450 . 2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  C_  (/) )
24 ss0 3284 . 2  |-  ( ( R  i^i  (  _I  |`  A ) )  C_  (/) 
->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
2523, 24syl 14 1  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433    i^i cin 2972    C_ wss 2973   (/)c0 3251   <.cop 3401   class class class wbr 3785    _I cid 4043    Po wpo 4049    |` cres 4365   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-xp 4369  df-rel 4370  df-res 4375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator