| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prel12 | Unicode version | ||
| Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| preq12b.1 |
|
| preq12b.2 |
|
| preq12b.3 |
|
| preq12b.4 |
|
| Ref | Expression |
|---|---|
| prel12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12b.1 |
. . . . 5
| |
| 2 | 1 | prid1 3498 |
. . . 4
|
| 3 | eleq2 2142 |
. . . 4
| |
| 4 | 2, 3 | mpbii 146 |
. . 3
|
| 5 | preq12b.2 |
. . . . 5
| |
| 6 | 5 | prid2 3499 |
. . . 4
|
| 7 | eleq2 2142 |
. . . 4
| |
| 8 | 6, 7 | mpbii 146 |
. . 3
|
| 9 | 4, 8 | jca 300 |
. 2
|
| 10 | 1 | elpr 3419 |
. . . 4
|
| 11 | eqeq2 2090 |
. . . . . . . . . . . 12
| |
| 12 | 11 | notbid 624 |
. . . . . . . . . . 11
|
| 13 | orel2 677 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl6bi 161 |
. . . . . . . . . 10
|
| 15 | 14 | com3l 80 |
. . . . . . . . 9
|
| 16 | 15 | imp 122 |
. . . . . . . 8
|
| 17 | 16 | ancrd 319 |
. . . . . . 7
|
| 18 | eqeq2 2090 |
. . . . . . . . . . . 12
| |
| 19 | 18 | notbid 624 |
. . . . . . . . . . 11
|
| 20 | orel1 676 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl6bi 161 |
. . . . . . . . . 10
|
| 22 | 21 | com3l 80 |
. . . . . . . . 9
|
| 23 | 22 | imp 122 |
. . . . . . . 8
|
| 24 | 23 | ancrd 319 |
. . . . . . 7
|
| 25 | 17, 24 | orim12d 732 |
. . . . . 6
|
| 26 | 5 | elpr 3419 |
. . . . . . 7
|
| 27 | orcom 679 |
. . . . . . 7
| |
| 28 | 26, 27 | bitri 182 |
. . . . . 6
|
| 29 | preq12b.3 |
. . . . . . 7
| |
| 30 | preq12b.4 |
. . . . . . 7
| |
| 31 | 1, 5, 29, 30 | preq12b 3562 |
. . . . . 6
|
| 32 | 25, 28, 31 | 3imtr4g 203 |
. . . . 5
|
| 33 | 32 | ex 113 |
. . . 4
|
| 34 | 10, 33 | syl5bi 150 |
. . 3
|
| 35 | 34 | impd 251 |
. 2
|
| 36 | 9, 35 | impbid2 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |