Proof of Theorem prel12
| Step | Hyp | Ref
| Expression |
| 1 | | preq12b.1 |
. . . . 5
⊢ 𝐴 ∈ V |
| 2 | 1 | prid1 3498 |
. . . 4
⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | | eleq2 2142 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐶, 𝐷})) |
| 4 | 2, 3 | mpbii 146 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐴 ∈ {𝐶, 𝐷}) |
| 5 | | preq12b.2 |
. . . . 5
⊢ 𝐵 ∈ V |
| 6 | 5 | prid2 3499 |
. . . 4
⊢ 𝐵 ∈ {𝐴, 𝐵} |
| 7 | | eleq2 2142 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐵 ∈ {𝐴, 𝐵} ↔ 𝐵 ∈ {𝐶, 𝐷})) |
| 8 | 6, 7 | mpbii 146 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 ∈ {𝐶, 𝐷}) |
| 9 | 4, 8 | jca 300 |
. 2
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷})) |
| 10 | 1 | elpr 3419 |
. . . 4
⊢ (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| 11 | | eqeq2 2090 |
. . . . . . . . . . . 12
⊢ (𝐵 = 𝐷 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐷)) |
| 12 | 11 | notbid 624 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝐷 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐴 = 𝐷)) |
| 13 | | orel2 677 |
. . . . . . . . . . 11
⊢ (¬
𝐴 = 𝐷 → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → 𝐴 = 𝐶)) |
| 14 | 12, 13 | syl6bi 161 |
. . . . . . . . . 10
⊢ (𝐵 = 𝐷 → (¬ 𝐴 = 𝐵 → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → 𝐴 = 𝐶))) |
| 15 | 14 | com3l 80 |
. . . . . . . . 9
⊢ (¬
𝐴 = 𝐵 → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → (𝐵 = 𝐷 → 𝐴 = 𝐶))) |
| 16 | 15 | imp 122 |
. . . . . . . 8
⊢ ((¬
𝐴 = 𝐵 ∧ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) → (𝐵 = 𝐷 → 𝐴 = 𝐶)) |
| 17 | 16 | ancrd 319 |
. . . . . . 7
⊢ ((¬
𝐴 = 𝐵 ∧ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) → (𝐵 = 𝐷 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 18 | | eqeq2 2090 |
. . . . . . . . . . . 12
⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) |
| 19 | 18 | notbid 624 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝐶 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐴 = 𝐶)) |
| 20 | | orel1 676 |
. . . . . . . . . . 11
⊢ (¬
𝐴 = 𝐶 → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → 𝐴 = 𝐷)) |
| 21 | 19, 20 | syl6bi 161 |
. . . . . . . . . 10
⊢ (𝐵 = 𝐶 → (¬ 𝐴 = 𝐵 → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → 𝐴 = 𝐷))) |
| 22 | 21 | com3l 80 |
. . . . . . . . 9
⊢ (¬
𝐴 = 𝐵 → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → (𝐵 = 𝐶 → 𝐴 = 𝐷))) |
| 23 | 22 | imp 122 |
. . . . . . . 8
⊢ ((¬
𝐴 = 𝐵 ∧ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) → (𝐵 = 𝐶 → 𝐴 = 𝐷)) |
| 24 | 23 | ancrd 319 |
. . . . . . 7
⊢ ((¬
𝐴 = 𝐵 ∧ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) → (𝐵 = 𝐶 → (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 25 | 17, 24 | orim12d 732 |
. . . . . 6
⊢ ((¬
𝐴 = 𝐵 ∧ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) → ((𝐵 = 𝐷 ∨ 𝐵 = 𝐶) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
| 26 | 5 | elpr 3419 |
. . . . . . 7
⊢ (𝐵 ∈ {𝐶, 𝐷} ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) |
| 27 | | orcom 679 |
. . . . . . 7
⊢ ((𝐵 = 𝐶 ∨ 𝐵 = 𝐷) ↔ (𝐵 = 𝐷 ∨ 𝐵 = 𝐶)) |
| 28 | 26, 27 | bitri 182 |
. . . . . 6
⊢ (𝐵 ∈ {𝐶, 𝐷} ↔ (𝐵 = 𝐷 ∨ 𝐵 = 𝐶)) |
| 29 | | preq12b.3 |
. . . . . . 7
⊢ 𝐶 ∈ V |
| 30 | | preq12b.4 |
. . . . . . 7
⊢ 𝐷 ∈ V |
| 31 | 1, 5, 29, 30 | preq12b 3562 |
. . . . . 6
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 32 | 25, 28, 31 | 3imtr4g 203 |
. . . . 5
⊢ ((¬
𝐴 = 𝐵 ∧ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) → (𝐵 ∈ {𝐶, 𝐷} → {𝐴, 𝐵} = {𝐶, 𝐷})) |
| 33 | 32 | ex 113 |
. . . 4
⊢ (¬
𝐴 = 𝐵 → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → (𝐵 ∈ {𝐶, 𝐷} → {𝐴, 𝐵} = {𝐶, 𝐷}))) |
| 34 | 10, 33 | syl5bi 150 |
. . 3
⊢ (¬
𝐴 = 𝐵 → (𝐴 ∈ {𝐶, 𝐷} → (𝐵 ∈ {𝐶, 𝐷} → {𝐴, 𝐵} = {𝐶, 𝐷}))) |
| 35 | 34 | impd 251 |
. 2
⊢ (¬
𝐴 = 𝐵 → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) → {𝐴, 𝐵} = {𝐶, 𝐷})) |
| 36 | 9, 35 | impbid2 141 |
1
⊢ (¬
𝐴 = 𝐵 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) |