ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prelpwi Unicode version

Theorem prelpwi 3969
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
prelpwi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)

Proof of Theorem prelpwi
StepHypRef Expression
1 prssi 3543 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
2 prexg 3966 . . 3  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  _V )
3 elpwg 3390 . . 3  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  e.  ~P C  <->  { A ,  B }  C_  C
) )
42, 3syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( { A ,  B }  e.  ~P C 
<->  { A ,  B }  C_  C ) )
51, 4mpbird 165 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   _Vcvv 2601    C_ wss 2973   ~Pcpw 3382   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator