ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext Unicode version

Theorem rext 3970
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Distinct variable group:    x, y, z

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3426 . . 3  |-  x  e. 
{ x }
2 vex 2604 . . . . 5  |-  x  e. 
_V
32snex 3957 . . . 4  |-  { x }  e.  _V
4 eleq2 2142 . . . . 5  |-  ( z  =  { x }  ->  ( x  e.  z  <-> 
x  e.  { x } ) )
5 eleq2 2142 . . . . 5  |-  ( z  =  { x }  ->  ( y  e.  z  <-> 
y  e.  { x } ) )
64, 5imbi12d 232 . . . 4  |-  ( z  =  { x }  ->  ( ( x  e.  z  ->  y  e.  z )  <->  ( x  e.  { x }  ->  y  e.  { x }
) ) )
73, 6spcv 2691 . . 3  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  (
x  e.  { x }  ->  y  e.  {
x } ) )
81, 7mpi 15 . 2  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  y  e.  { x } )
9 velsn 3415 . . 3  |-  ( y  e.  { x }  <->  y  =  x )
10 equcomi 1632 . . 3  |-  ( y  =  x  ->  x  =  y )
119, 10sylbi 119 . 2  |-  ( y  e.  { x }  ->  x  =  y )
128, 11syl 14 1  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1282    = wceq 1284    e. wcel 1433   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator