| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rext | Unicode version | ||
| Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
| Ref | Expression |
|---|---|
| rext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid 3426 |
. . 3
| |
| 2 | vex 2604 |
. . . . 5
| |
| 3 | 2 | snex 3957 |
. . . 4
|
| 4 | eleq2 2142 |
. . . . 5
| |
| 5 | eleq2 2142 |
. . . . 5
| |
| 6 | 4, 5 | imbi12d 232 |
. . . 4
|
| 7 | 3, 6 | spcv 2691 |
. . 3
|
| 8 | 1, 7 | mpi 15 |
. 2
|
| 9 | velsn 3415 |
. . 3
| |
| 10 | equcomi 1632 |
. . 3
| |
| 11 | 9, 10 | sylbi 119 |
. 2
|
| 12 | 8, 11 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |