ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.12sn Unicode version

Theorem r19.12sn 3458
Description: Special case of r19.12 2466 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.)
Assertion
Ref Expression
r19.12sn  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hints:    ph( x, y)    B( y)    V( x, y)

Proof of Theorem r19.12sn
StepHypRef Expression
1 sbcralg 2892 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
2 rexsns 3432 . 2  |-  ( E. x  e.  { A } A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph )
3 rexsns 3432 . . 3  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
43ralbii 2372 . 2  |-  ( A. y  e.  B  E. x  e.  { A } ph  <->  A. y  e.  B  [. A  /  x ]. ph )
51, 2, 43bitr4g 221 1  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1433   A.wral 2348   E.wrex 2349   [.wsbc 2815   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-sn 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator