![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeq | Unicode version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rabeq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2219 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2219 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | rabeqf 2594 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 |
This theorem is referenced by: rabeqbidv 2596 rabeqbidva 2597 difeq1 3083 ifeq1 3354 ifeq2 3355 supeq2 6402 iooval2 8938 fzval2 9032 lcmval 10445 lcmcllem 10449 lcmledvds 10452 |
Copyright terms: Public domain | W3C validator |