ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval2 Unicode version

Theorem fzval2 9032
Description: An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )

Proof of Theorem fzval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzval 9031 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
2 zssre 8358 . . . . . . 7  |-  ZZ  C_  RR
3 ressxr 7162 . . . . . . 7  |-  RR  C_  RR*
42, 3sstri 3008 . . . . . 6  |-  ZZ  C_  RR*
54sseli 2995 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  RR* )
64sseli 2995 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR* )
7 iccval 8943 . . . . 5  |-  ( ( M  e.  RR*  /\  N  e.  RR* )  ->  ( M [,] N )  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
85, 6, 7syl2an 283 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M [,] N
)  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
98ineq1d 3166 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M [,] N )  i^i  ZZ )  =  ( {
k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ ) )
10 inrab2 3237 . . . 4  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  (
RR*  i^i  ZZ )  |  ( M  <_ 
k  /\  k  <_  N ) }
11 sseqin2 3185 . . . . . 6  |-  ( ZZ  C_  RR*  <->  ( RR*  i^i  ZZ )  =  ZZ )
124, 11mpbi 143 . . . . 5  |-  ( RR*  i^i 
ZZ )  =  ZZ
13 rabeq 2595 . . . . 5  |-  ( (
RR*  i^i  ZZ )  =  ZZ  ->  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) } )
1412, 13ax-mp 7 . . . 4  |-  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
1510, 14eqtri 2101 . . 3  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
169, 15syl6req 2130 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }  =  ( ( M [,] N
)  i^i  ZZ )
)
171, 16eqtrd 2113 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {crab 2352    i^i cin 2972    C_ wss 2973   class class class wbr 3785  (class class class)co 5532   RRcr 6980   RR*cxr 7152    <_ cle 7154   ZZcz 8351   [,]cicc 8914   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-neg 7282  df-z 8352  df-icc 8918  df-fz 9030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator