HomeHome Intuitionistic Logic Explorer
Theorem List (p. 26 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2501-2600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremr19.32r 2501 One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.)
 |- 
 F/ x ph   =>    |-  ( ( ph  \/  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  \/  ps )
 )
 
Theoremr19.32vr 2502* One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence, as seen at r19.32vdc 2503. (Contributed by Jim Kingdon, 19-Aug-2018.)
 |-  ( ( ph  \/  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  \/  ps )
 )
 
Theoremr19.32vdc 2503* Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, where  ph is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
 |-  (DECID 
 ph  ->  ( A. x  e.  A  ( ph  \/  ps )  <->  ( ph  \/  A. x  e.  A  ps ) ) )
 
Theoremr19.35-1 2504 Restricted quantifier version of 19.35-1 1555. (Contributed by Jim Kingdon, 4-Jun-2018.)
 |-  ( E. x  e.  A  ( ph  ->  ps )  ->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )
 
Theoremr19.36av 2505* One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. In classical logic, the converse would hold if  A has at least one element, but in intuitionistic logic, that is not a sufficient condition. (Contributed by NM, 22-Oct-2003.)
 |-  ( E. x  e.  A  ( ph  ->  ps )  ->  ( A. x  e.  A  ph  ->  ps ) )
 
Theoremr19.37 2506 Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. In classical logic the converse would hold if  A has at least one element, but that is not sufficient in intuitionistic logic. (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.)
 |- 
 F/ x ph   =>    |-  ( E. x  e.  A  ( ph  ->  ps )  ->  ( ph  ->  E. x  e.  A  ps ) )
 
Theoremr19.37av 2507* Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
 |-  ( E. x  e.  A  ( ph  ->  ps )  ->  ( ph  ->  E. x  e.  A  ps ) )
 
Theoremr19.40 2508 Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
 |-  ( E. x  e.  A  ( ph  /\  ps )  ->  ( E. x  e.  A  ph  /\  E. x  e.  A  ps ) )
 
Theoremr19.41 2509 Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 1-Nov-2010.)
 |- 
 F/ x ps   =>    |-  ( E. x  e.  A  ( ph  /\  ps ) 
 <->  ( E. x  e.  A  ph  /\  ps )
 )
 
Theoremr19.41v 2510* Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.)
 |-  ( E. x  e.  A  ( ph  /\  ps ) 
 <->  ( E. x  e.  A  ph  /\  ps )
 )
 
Theoremr19.42v 2511* Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
 |-  ( E. x  e.  A  ( ph  /\  ps ) 
 <->  ( ph  /\  E. x  e.  A  ps ) )
 
Theoremr19.43 2512 Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof rewritten by Jim Kingdon, 5-Jun-2018.)
 |-  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
 
Theoremr19.44av 2513* One direction of a restricted quantifier version of Theorem 19.44 of [Margaris] p. 90. The other direction doesn't hold when  A is empty. (Contributed by NM, 2-Apr-2004.)
 |-  ( E. x  e.  A  ( ph  \/  ps )  ->  ( E. x  e.  A  ph  \/  ps ) )
 
Theoremr19.45av 2514* Restricted version of one direction of Theorem 19.45 of [Margaris] p. 90. (The other direction doesn't hold when  A is empty.) (Contributed by NM, 2-Apr-2004.)
 |-  ( E. x  e.  A  ( ph  \/  ps )  ->  ( ph  \/  E. x  e.  A  ps ) )
 
Theoremralcomf 2515* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   &    |-  F/_ x B   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
 
Theoremrexcomf 2516* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   &    |-  F/_ x B   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
 
Theoremralcom 2517* Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
 
Theoremrexcom 2518* Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
 
Theoremrexcom13 2519* Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
 |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ph  <->  E. z  e.  C  E. y  e.  B  E. x  e.  A  ph )
 
Theoremrexrot4 2520* Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
 |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. z  e.  C  E. w  e.  D  E. x  e.  A  E. y  e.  B  ph )
 
Theoremralcom3 2521 A commutative law for restricted quantifiers that swaps the domain of the restriction. (Contributed by NM, 22-Feb-2004.)
 |-  ( A. x  e.  A  ( x  e.  B  ->  ph )  <->  A. x  e.  B  ( x  e.  A  -> 
 ph ) )
 
Theoremreean 2522* Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( E. x  e.  A  E. y  e.  B  ( ph  /\  ps )  <->  ( E. x  e.  A  ph 
 /\  E. y  e.  B  ps ) )
 
Theoremreeanv 2523* Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
 |-  ( E. x  e.  A  E. y  e.  B  ( ph  /\  ps ) 
 <->  ( E. x  e.  A  ph  /\  E. y  e.  B  ps ) )
 
Theorem3reeanv 2524* Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
 |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ( ph  /\  ps  /\ 
 ch )  <->  ( E. x  e.  A  ph  /\  E. y  e.  B  ps  /\  E. z  e.  C  ch ) )
 
Theoremnfreu1 2525  x is not free in  E! x  e.  A ph. (Contributed by NM, 19-Mar-1997.)
 |- 
 F/ x E! x  e.  A  ph
 
Theoremnfrmo1 2526  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ x E* x  e.  A  ph
 
Theoremnfreudxy 2527* Not-free deduction for restricted uniqueness. This is a version where  x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E! y  e.  A  ps )
 
Theoremnfreuxy 2528* Not-free for restricted uniqueness. This is a version where  x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x E! y  e.  A  ph
 
Theoremrabid 2529 An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
 |-  ( x  e.  { x  e.  A  |  ph
 } 
 <->  ( x  e.  A  /\  ph ) )
 
Theoremrabid2 2530* An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |-  ( A  =  { x  e.  A  |  ph
 } 
 <-> 
 A. x  e.  A  ph )
 
Theoremrabbi 2531 Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2592. (Contributed by NM, 25-Nov-2013.)
 |-  ( A. x  e.  A  ( ps  <->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )
 
Theoremrabswap 2532 Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
 |- 
 { x  e.  A  |  x  e.  B }  =  { x  e.  B  |  x  e.  A }
 
Theoremnfrab1 2533 The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
 |-  F/_ x { x  e.  A  |  ph }
 
Theoremnfrabxy 2534* A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
 |- 
 F/ x ph   &    |-  F/_ x A   =>    |-  F/_ x { y  e.  A  |  ph }
 
Theoremreubida 2535 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by Mario Carneiro, 19-Nov-2016.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E! x  e.  A  ps 
 <->  E! x  e.  A  ch ) )
 
Theoremreubidva 2536* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 13-Nov-2004.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E! x  e.  A  ps 
 <->  E! x  e.  A  ch ) )
 
Theoremreubidv 2537* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 17-Oct-1996.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E! x  e.  A  ps 
 <->  E! x  e.  A  ch ) )
 
Theoremreubiia 2538 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 14-Nov-2004.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! x  e.  A  ps )
 
Theoremreubii 2539 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 22-Oct-1999.)
 |-  ( ph  <->  ps )   =>    |-  ( E! x  e.  A  ph  <->  E! x  e.  A  ps )
 
Theoremrmobida 2540 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E* x  e.  A  ps 
 <->  E* x  e.  A  ch ) )
 
Theoremrmobidva 2541* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E* x  e.  A  ps 
 <->  E* x  e.  A  ch ) )
 
Theoremrmobidv 2542* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E* x  e.  A  ps 
 <->  E* x  e.  A  ch ) )
 
Theoremrmobiia 2543 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )
 
Theoremrmobii 2544 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
 |-  ( ph  <->  ps )   =>    |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )
 
Theoremraleqf 2545 Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
 
Theoremrexeqf 2546 Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
 
Theoremreueq1f 2547 Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
 
Theoremrmoeq1f 2548 Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
 
Theoremraleq 2549* Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
 |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
 
Theoremrexeq 2550* Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
 |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
 
Theoremreueq1 2551* Equality theorem for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.)
 |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
 
Theoremrmoeq1 2552* Equality theorem for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
 
Theoremraleqi 2553* Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  A  =  B   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ph )
 
Theoremrexeqi 2554* Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  A  =  B   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ph )
 
Theoremraleqdv 2555* Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ps ) )
 
Theoremrexeqdv 2556* Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ps ) )
 
Theoremraleqbi1dv 2557* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ps ) )
 
Theoremrexeqbi1dv 2558* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ps ) )
 
Theoremreueqd 2559* Equality deduction for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ps ) )
 
Theoremrmoeqd 2560* Equality deduction for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ps ) )
 
Theoremraleqbidv 2561* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidv 2562* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremraleqbidva 2563* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidva 2564* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremmormo 2565 Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x ph  ->  E* x  e.  A  ph )
 
Theoremreu5 2566 Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph  /\  E* x  e.  A  ph ) )
 
Theoremreurex 2567 Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
 |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
 
Theoremreurmo 2568 Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremrmo5 2569 Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A  ph  <->  ( E. x  e.  A  ph  ->  E! x  e.  A  ph ) )
 
Theoremnrexrmo 2570 Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
 |-  ( -.  E. x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremcbvralf 2571 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexf 2572 Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvral 2573* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrex 2574* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreu 2575* Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmo 2576* Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvralv 2577* Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexv 2578* Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreuv 2579* Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmov 2580* Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvraldva2 2581* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. y  e.  B  ch ) )
 
Theoremcbvrexdva2 2582* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  B  ch ) )
 
Theoremcbvraldva 2583* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. y  e.  A  ch ) )
 
Theoremcbvrexdva 2584* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  A  ch ) )
 
Theoremcbvral2v 2585* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
Theoremcbvrex2v 2586* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
Theoremcbvral3v 2587* Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
 |-  ( x  =  w 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  v  ->  ( ch  <->  th ) )   &    |-  (
 z  =  u  ->  ( th  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. w  e.  A  A. v  e.  B  A. u  e.  C  ps )
 
Theoremcbvralsv 2588* Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
 
Theoremcbvrexsv 2589* Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( E. x  e.  A  ph  <->  E. y  e.  A  [ y  /  x ] ph )
 
Theoremsbralie 2590* Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( [ x  /  y ] A. x  e.  y  ph  <->  A. y  e.  x  ps )
 
Theoremrabbiia 2591 Equivalent wff's yield equal restricted class abstractions (inference rule). (Contributed by NM, 22-May-1999.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
 
Theoremrabbidva 2592* Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by NM, 28-Nov-2003.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabbidv 2593* Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by NM, 10-Feb-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabeqf 2594 Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
 
Theoremrabeq 2595* Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
 |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph
 } )
 
Theoremrabeqbidv 2596* Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeqbidva 2597* Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeq2i 2598 Inference rule from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
 |-  A  =  { x  e.  B  |  ph }   =>    |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
 )
 
Theoremcbvrab 2599 Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
 
Theoremcbvrabv 2600* Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >