ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issref Unicode version

Theorem issref 4727
Description: Two ways to state a relation is reflexive. Adapted from Tarski. (Contributed by FL, 15-Jan-2012.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
issref  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem issref
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ral 2353 . 2  |-  ( A. x  e.  A  x R x  <->  A. x ( x  e.  A  ->  x R x ) )
2 vex 2604 . . . . 5  |-  x  e. 
_V
3 opelresi 4641 . . . . 5  |-  ( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A ) )
42, 3ax-mp 7 . . . 4  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A )
5 df-br 3786 . . . . 5  |-  ( x R x  <->  <. x ,  x >.  e.  R
)
65bicomi 130 . . . 4  |-  ( <.
x ,  x >.  e.  R  <->  x R x )
74, 6imbi12i 237 . . 3  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  ( x  e.  A  ->  x R x ) )
87albii 1399 . 2  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( x  e.  A  ->  x R x ) )
9 ralidm 3341 . . . . . 6  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
10 ralv 2616 . . . . . 6  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
119, 10bitri 182 . . . . 5  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
12 df-ral 2353 . . . . . . . . 9  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) ) )
13 pm2.27 39 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  (
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) ) )
14 opelresg 4637 . . . . . . . . . . . . . . 15  |-  ( z  e.  _V  ->  ( <. x ,  z >.  e.  (  _I  |`  A )  <-> 
( <. x ,  z
>.  e.  _I  /\  x  e.  A ) ) )
15 df-br 3786 . . . . . . . . . . . . . . . . 17  |-  ( x  _I  z  <->  <. x ,  z >.  e.  _I  )
16 vex 2604 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
_V
1716ideq 4506 . . . . . . . . . . . . . . . . . 18  |-  ( x  _I  z  <->  x  =  z )
18 opelresi 4641 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  A  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A ) )
19 pm2.27 39 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  x >.  e.  R ) )
20 opeq2 3571 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  <. x ,  x >.  =  <. x ,  z >. )
2120eleq1d 2147 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  ( <. x ,  x >.  e.  R  <->  <. x ,  z
>.  e.  R ) )
2221biimpcd 157 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
x ,  x >.  e.  R  ->  ( x  =  z  ->  <. x ,  z >.  e.  R
) )
2319, 22syl6 33 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( x  =  z  ->  <. x ,  z
>.  e.  R ) ) )
2418, 23syl6bir 162 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  (
x  =  z  ->  <. x ,  z >.  e.  R ) ) ) )
2524pm2.43i 48 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  (
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( x  =  z  ->  <. x ,  z
>.  e.  R ) ) )
2625com3r 78 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R
) ) )
2717, 26sylbi 119 . . . . . . . . . . . . . . . . 17  |-  ( x  _I  z  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R
) ) )
2815, 27sylbir 133 . . . . . . . . . . . . . . . 16  |-  ( <.
x ,  z >.  e.  _I  ->  ( x  e.  A  ->  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) ) )
2928imp 122 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  z >.  e.  _I  /\  x  e.  A )  ->  (
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) )
3014, 29syl6bi 161 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  ( <. x ,  z >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) ) )
3130com3r 78 . . . . . . . . . . . . 13  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( z  e.  _V  ->  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) ) )
3231ralrimiv 2433 . . . . . . . . . . . 12  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3313, 32syl6 33 . . . . . . . . . . 11  |-  ( x  e.  _V  ->  (
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) ) )
342, 33ax-mp 7 . . . . . . . . . 10  |-  ( ( x  e.  _V  ->  (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3534sps 1470 . . . . . . . . 9  |-  ( A. x ( x  e. 
_V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3612, 35sylbi 119 . . . . . . . 8  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3736ralimi 2426 . . . . . . 7  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. x  e.  _V  A. z  e. 
_V  ( <. x ,  z >.  e.  (  _I  |`  A )  -> 
<. x ,  z >.  e.  R ) )
38 eleq1 2141 . . . . . . . . 9  |-  ( y  =  <. x ,  z
>.  ->  ( y  e.  (  _I  |`  A )  <->  <. x ,  z >.  e.  (  _I  |`  A ) ) )
39 eleq1 2141 . . . . . . . . 9  |-  ( y  =  <. x ,  z
>.  ->  ( y  e.  R  <->  <. x ,  z
>.  e.  R ) )
4038, 39imbi12d 232 . . . . . . . 8  |-  ( y  =  <. x ,  z
>.  ->  ( ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  ( <. x ,  z >.  e.  (  _I  |`  A )  -> 
<. x ,  z >.  e.  R ) ) )
4140ralxp 4497 . . . . . . 7  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  A. x  e.  _V  A. z  e.  _V  ( <. x ,  z >.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
4237, 41sylibr 132 . . . . . 6  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )
43 df-ral 2353 . . . . . . 7  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  A. y ( y  e.  ( _V  X.  _V )  ->  ( y  e.  (  _I  |`  A )  ->  y  e.  R
) ) )
44 relres 4657 . . . . . . . . . . . 12  |-  Rel  (  _I  |`  A )
45 df-rel 4370 . . . . . . . . . . . 12  |-  ( Rel  (  _I  |`  A )  <-> 
(  _I  |`  A ) 
C_  ( _V  X.  _V ) )
4644, 45mpbi 143 . . . . . . . . . . 11  |-  (  _I  |`  A )  C_  ( _V  X.  _V )
4746sseli 2995 . . . . . . . . . 10  |-  ( y  e.  (  _I  |`  A )  ->  y  e.  ( _V  X.  _V )
)
4847ancri 317 . . . . . . . . 9  |-  ( y  e.  (  _I  |`  A )  ->  ( y  e.  ( _V  X.  _V )  /\  y  e.  (  _I  |`  A )
) )
49 pm3.31 258 . . . . . . . . 9  |-  ( ( y  e.  ( _V 
X.  _V )  ->  (
y  e.  (  _I  |`  A )  ->  y  e.  R ) )  -> 
( ( y  e.  ( _V  X.  _V )  /\  y  e.  (  _I  |`  A )
)  ->  y  e.  R ) )
5048, 49syl5 32 . . . . . . . 8  |-  ( ( y  e.  ( _V 
X.  _V )  ->  (
y  e.  (  _I  |`  A )  ->  y  e.  R ) )  -> 
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5150alimi 1384 . . . . . . 7  |-  ( A. y ( y  e.  ( _V  X.  _V )  ->  ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5243, 51sylbi 119 . . . . . 6  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5342, 52syl 14 . . . . 5  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5411, 53sylbir 133 . . . 4  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
55 dfss2 2988 . . . 4  |-  ( (  _I  |`  A )  C_  R  <->  A. y ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )
5654, 55sylibr 132 . . 3  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  (  _I  |`  A )  C_  R )
57 ssel 2993 . . . 4  |-  ( (  _I  |`  A )  C_  R  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  -> 
<. x ,  x >.  e.  R ) )
5857alrimiv 1795 . . 3  |-  ( (  _I  |`  A )  C_  R  ->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
5956, 58impbii 124 . 2  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  (  _I  |`  A )  C_  R
)
601, 8, 593bitr2ri 207 1  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601    C_ wss 2973   <.cop 3401   class class class wbr 3785    _I cid 4043    X. cxp 4361    |` cres 4365   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-iun 3680  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-res 4375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator