ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunsn Unicode version

Theorem ralunsn 3589
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralunsn.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralunsn  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ph  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable groups:    x, B    ps, x
Allowed substitution hints:    ph( x)    A( x)    C( x)

Proof of Theorem ralunsn
StepHypRef Expression
1 ralunb 3153 . 2  |-  ( A. x  e.  ( A  u.  { B } )
ph 
<->  ( A. x  e.  A  ph  /\  A. x  e.  { B } ph ) )
2 ralunsn.1 . . . 4  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
32ralsng 3433 . . 3  |-  ( B  e.  C  ->  ( A. x  e.  { B } ph  <->  ps ) )
43anbi2d 451 . 2  |-  ( B  e.  C  ->  (
( A. x  e.  A  ph  /\  A. x  e.  { B } ph )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
51, 4syl5bb 190 1  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ph  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348    u. cun 2971   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404
This theorem is referenced by:  2ralunsn  3590
  Copyright terms: Public domain W3C validator