| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resasplitss | Unicode version | ||
| Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.) |
| Ref | Expression |
|---|---|
| resasplitss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidm 3115 |
. . . 4
| |
| 2 | 1 | uneq1i 3122 |
. . 3
|
| 3 | un4 3132 |
. . . 4
| |
| 4 | simp3 940 |
. . . . . . 7
| |
| 5 | 4 | uneq1d 3125 |
. . . . . 6
|
| 6 | 5 | uneq2d 3126 |
. . . . 5
|
| 7 | resundi 4643 |
. . . . . . 7
| |
| 8 | inundifss 3321 |
. . . . . . . 8
| |
| 9 | ssres2 4656 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 7 |
. . . . . . 7
|
| 11 | 7, 10 | eqsstr3i 3030 |
. . . . . 6
|
| 12 | resundi 4643 |
. . . . . . 7
| |
| 13 | incom 3158 |
. . . . . . . . . 10
| |
| 14 | 13 | uneq1i 3122 |
. . . . . . . . 9
|
| 15 | inundifss 3321 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqsstri 3029 |
. . . . . . . 8
|
| 17 | ssres2 4656 |
. . . . . . . 8
| |
| 18 | 16, 17 | ax-mp 7 |
. . . . . . 7
|
| 19 | 12, 18 | eqsstr3i 3030 |
. . . . . 6
|
| 20 | unss12 3144 |
. . . . . 6
| |
| 21 | 11, 19, 20 | mp2an 416 |
. . . . 5
|
| 22 | 6, 21 | syl6eqss 3049 |
. . . 4
|
| 23 | 3, 22 | syl5eqssr 3044 |
. . 3
|
| 24 | 2, 23 | syl5eqssr 3044 |
. 2
|
| 25 | fnresdm 5028 |
. . . 4
| |
| 26 | fnresdm 5028 |
. . . 4
| |
| 27 | uneq12 3121 |
. . . 4
| |
| 28 | 25, 26, 27 | syl2an 283 |
. . 3
|
| 29 | 28 | 3adant3 958 |
. 2
|
| 30 | 24, 29 | sseqtrd 3035 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-dm 4373 df-res 4375 df-fun 4924 df-fn 4925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |