ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem Unicode version

Theorem rmo2ilem 2903
Description: Condition implying restricted "at most one." (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2ilem  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 259 . . . . 5  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
21albii 1399 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
3 df-ral 2353 . . . 4  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
42, 3bitr4i 185 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x  e.  A  ( ph  ->  x  =  y ) )
54exbii 1536 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
6 nfv 1461 . . . . 5  |-  F/ y  x  e.  A
7 rmo2.1 . . . . 5  |-  F/ y
ph
86, 7nfan 1497 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
98mo2r 1993 . . 3  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x ( x  e.  A  /\  ph )
)
10 df-rmo 2356 . . 3  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
119, 10sylibr 132 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x  e.  A  ph )
125, 11sylbir 133 1  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284   F/wnf 1389   E.wex 1421    e. wcel 1433   E*wmo 1942   A.wral 2348   E*wrmo 2351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-ral 2353  df-rmo 2356
This theorem is referenced by:  rmo2i  2904
  Copyright terms: Public domain W3C validator