ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnpropg Unicode version

Theorem rnpropg 4820
Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Assertion
Ref Expression
rnpropg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }
)

Proof of Theorem rnpropg
StepHypRef Expression
1 df-pr 3405 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21rneqi 4580 . 2  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
3 rnsnopg 4819 . . . . 5  |-  ( A  e.  V  ->  ran  {
<. A ,  C >. }  =  { C }
)
43adantr 270 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. }  =  { C } )
5 rnsnopg 4819 . . . . 5  |-  ( B  e.  W  ->  ran  {
<. B ,  D >. }  =  { D }
)
65adantl 271 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. B ,  D >. }  =  { D } )
74, 6uneq12d 3127 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } ) )
8 rnun 4752 . . 3  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
9 df-pr 3405 . . 3  |-  { C ,  D }  =  ( { C }  u.  { D } )
107, 8, 93eqtr4g 2138 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  ( { <. A ,  C >. }  u.  {
<. B ,  D >. } )  =  { C ,  D } )
112, 10syl5eq 2125 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433    u. cun 2971   {csn 3398   {cpr 3399   <.cop 3401   ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator