ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal1 Unicode version

Theorem sbal1 1919
Description: A theorem used in elimination of disjoint variable restriction on  x and  y by replacing it with a distinctor  -.  A. x x  =  z. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
Assertion
Ref Expression
sbal1  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbal 1917 . . . 4  |-  ( [ w  /  y ] A. x ph  <->  A. x [ w  /  y ] ph )
21sbbii 1688 . . 3  |-  ( [ z  /  w ] [ w  /  y ] A. x ph  <->  [ z  /  w ] A. x [ w  /  y ] ph )
3 sbal1yz 1918 . . 3  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  w ] A. x [ w  / 
y ] ph  <->  A. x [ z  /  w ] [ w  /  y ] ph ) )
42, 3syl5bb 190 . 2  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  w ] [ w  /  y ] A. x ph  <->  A. x [ z  /  w ] [ w  /  y ] ph ) )
5 ax-17 1459 . . 3  |-  ( A. x ph  ->  A. w A. x ph )
65sbco2v 1862 . 2  |-  ( [ z  /  w ] [ w  /  y ] A. x ph  <->  [ z  /  y ] A. x ph )
7 ax-17 1459 . . . 4  |-  ( ph  ->  A. w ph )
87sbco2v 1862 . . 3  |-  ( [ z  /  w ] [ w  /  y ] ph  <->  [ z  /  y ] ph )
98albii 1399 . 2  |-  ( A. x [ z  /  w ] [ w  /  y ] ph  <->  A. x [ z  /  y ] ph )
104, 6, 93bitr3g 220 1  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103   A.wal 1282   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator