| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbal1yz | Unicode version | ||
| Description: Lemma for proving sbal1 1919. Same as sbal1 1919 but with an additional
distinct variable constraint on |
| Ref | Expression |
|---|---|
| sbal1yz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveeq2or 1737 |
. . . . . 6
| |
| 2 | equcom 1633 |
. . . . . . . . 9
| |
| 3 | 2 | nfbii 1402 |
. . . . . . . 8
|
| 4 | 19.21t 1514 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylbi 119 |
. . . . . . 7
|
| 6 | 5 | orim2i 710 |
. . . . . 6
|
| 7 | 1, 6 | ax-mp 7 |
. . . . 5
|
| 8 | 7 | ori 674 |
. . . 4
|
| 9 | 8 | albidv 1745 |
. . 3
|
| 10 | alcom 1407 |
. . . 4
| |
| 11 | sb6 1807 |
. . . . . 6
| |
| 12 | 2 | imbi1i 236 |
. . . . . . 7
|
| 13 | 12 | albii 1399 |
. . . . . 6
|
| 14 | 11, 13 | bitri 182 |
. . . . 5
|
| 15 | 14 | albii 1399 |
. . . 4
|
| 16 | 10, 15 | bitr4i 185 |
. . 3
|
| 17 | sb6 1807 |
. . . 4
| |
| 18 | 2 | imbi1i 236 |
. . . . 5
|
| 19 | 18 | albii 1399 |
. . . 4
|
| 20 | 17, 19 | bitr2i 183 |
. . 3
|
| 21 | 9, 16, 20 | 3bitr3g 220 |
. 2
|
| 22 | 21 | bicomd 139 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sbal1 1919 |
| Copyright terms: Public domain | W3C validator |