| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2v | Unicode version | ||
| Description: This is a version of sbco2 1880 where |
| Ref | Expression |
|---|---|
| sbco2v.1 |
|
| Ref | Expression |
|---|---|
| sbco2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2v.1 |
. . . 4
| |
| 2 | 1 | sbco2vlem 1861 |
. . 3
|
| 3 | 2 | sbbii 1688 |
. 2
|
| 4 | ax-17 1459 |
. . 3
| |
| 5 | 4 | sbco2vlem 1861 |
. 2
|
| 6 | ax-17 1459 |
. . 3
| |
| 7 | 6 | sbco2vlem 1861 |
. 2
|
| 8 | 3, 5, 7 | 3bitr3i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: nfsb 1863 equsb3 1866 sbn 1867 sbim 1868 sbor 1869 sban 1870 sbco2vd 1882 sbco3v 1884 sbcom2v2 1903 sbcom2 1904 dfsb7 1908 sb7f 1909 sbal 1917 sbal1 1919 sbex 1921 |
| Copyright terms: Public domain | W3C validator |