ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc2ie Unicode version

Theorem sbc2ie 2885
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
sbc2ie.1  |-  A  e. 
_V
sbc2ie.2  |-  B  e. 
_V
sbc2ie.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
sbc2ie  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
Distinct variable groups:    x, y, A   
y, B    ps, x, y
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem sbc2ie
StepHypRef Expression
1 sbc2ie.1 . 2  |-  A  e. 
_V
2 sbc2ie.2 . 2  |-  B  e. 
_V
3 nfv 1461 . . 3  |-  F/ x ps
4 nfv 1461 . . 3  |-  F/ y ps
52nfth 1393 . . 3  |-  F/ x  B  e.  _V
6 sbc2ie.3 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
73, 4, 5, 6sbc2iegf 2884 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ps )
)
81, 2, 7mp2an 416 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   [.wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816
This theorem is referenced by:  sbc3ie  2887
  Copyright terms: Public domain W3C validator