ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc2ie GIF version

Theorem sbc2ie 2885
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
sbc2ie.1 𝐴 ∈ V
sbc2ie.2 𝐵 ∈ V
sbc2ie.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbc2ie ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem sbc2ie
StepHypRef Expression
1 sbc2ie.1 . 2 𝐴 ∈ V
2 sbc2ie.2 . 2 𝐵 ∈ V
3 nfv 1461 . . 3 𝑥𝜓
4 nfv 1461 . . 3 𝑦𝜓
52nfth 1393 . . 3 𝑥 𝐵 ∈ V
6 sbc2ie.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
73, 4, 5, 6sbc2iegf 2884 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
81, 2, 7mp2an 416 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  Vcvv 2601  [wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816
This theorem is referenced by:  sbc3ie  2887
  Copyright terms: Public domain W3C validator