| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceqg | Unicode version | ||
| Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbceqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 2818 |
. . 3
| |
| 2 | dfsbcq2 2818 |
. . . . 5
| |
| 3 | 2 | abbidv 2196 |
. . . 4
|
| 4 | dfsbcq2 2818 |
. . . . 5
| |
| 5 | 4 | abbidv 2196 |
. . . 4
|
| 6 | 3, 5 | eqeq12d 2095 |
. . 3
|
| 7 | nfs1v 1856 |
. . . . . 6
| |
| 8 | 7 | nfab 2223 |
. . . . 5
|
| 9 | nfs1v 1856 |
. . . . . 6
| |
| 10 | 9 | nfab 2223 |
. . . . 5
|
| 11 | 8, 10 | nfeq 2226 |
. . . 4
|
| 12 | sbab 2205 |
. . . . 5
| |
| 13 | sbab 2205 |
. . . . 5
| |
| 14 | 12, 13 | eqeq12d 2095 |
. . . 4
|
| 15 | 11, 14 | sbie 1714 |
. . 3
|
| 16 | 1, 6, 15 | vtoclbg 2659 |
. 2
|
| 17 | df-csb 2909 |
. . 3
| |
| 18 | df-csb 2909 |
. . 3
| |
| 19 | 17, 18 | eqeq12i 2094 |
. 2
|
| 20 | 16, 19 | syl6bbr 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: sbcne12g 2924 sbceq1g 2926 sbceq2g 2928 sbcfng 5064 |
| Copyright terms: Public domain | W3C validator |