![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | Unicode version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1686 and substitution for class variables df-sbc 2816. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2817. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2141 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-clab 2068 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-sbc 2816 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 2, 4 | 3bitr3g 220 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-clab 2068 df-cleq 2074 df-clel 2077 df-sbc 2816 |
This theorem is referenced by: sbsbc 2819 sbc8g 2822 sbceq1a 2824 sbc5 2838 sbcng 2854 sbcimg 2855 sbcan 2856 sbcang 2857 sbcor 2858 sbcorg 2859 sbcbig 2860 sbcal 2865 sbcalg 2866 sbcex2 2867 sbcexg 2868 sbcel1v 2876 sbctt 2880 sbcralt 2890 sbcrext 2891 sbcralg 2892 sbcreug 2894 rspsbc 2896 rspesbca 2898 sbcel12g 2921 sbceqg 2922 sbcbrg 3834 csbopabg 3856 opelopabsb 4015 findes 4344 iota4 4905 csbiotag 4915 csbriotag 5500 nn0ind-raph 8464 uzind4s 8678 bezoutlemmain 10387 bezoutlemex 10390 |
Copyright terms: Public domain | W3C validator |