ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfng Unicode version

Theorem sbcfng 5064
Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfng  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
Distinct variable groups:    x, V    x, X
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem sbcfng
StepHypRef Expression
1 df-fn 4925 . . . 4  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
21a1i 9 . . 3  |-  ( X  e.  V  ->  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) ) )
32sbcbidv 2872 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [. X  /  x ]. ( Fun  F  /\  dom  F  =  A ) ) )
4 sbcfung 4945 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. Fun  F  <->  Fun  [_ X  /  x ]_ F ) )
5 sbceqg 2922 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. dom  F  =  A  <->  [_ X  /  x ]_ dom  F  =  [_ X  /  x ]_ A
) )
6 csbdmg 4547 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ dom  F  =  dom  [_ X  /  x ]_ F )
76eqeq1d 2089 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ dom  F  =  [_ X  /  x ]_ A  <->  dom  [_ X  /  x ]_ F  =  [_ X  /  x ]_ A ) )
85, 7bitrd 186 . . . 4  |-  ( X  e.  V  ->  ( [. X  /  x ]. dom  F  =  A  <->  dom  [_ X  /  x ]_ F  =  [_ X  /  x ]_ A ) )
94, 8anbi12d 456 . . 3  |-  ( X  e.  V  ->  (
( [. X  /  x ]. Fun  F  /\  [. X  /  x ]. dom  F  =  A )  <->  ( Fun  [_ X  /  x ]_ F  /\  dom  [_ X  /  x ]_ F  = 
[_ X  /  x ]_ A ) ) )
10 sbcan 2856 . . 3  |-  ( [. X  /  x ]. ( Fun  F  /\  dom  F  =  A )  <->  ( [. X  /  x ]. Fun  F  /\  [. X  /  x ]. dom  F  =  A ) )
11 df-fn 4925 . . 3  |-  ( [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A  <->  ( Fun  [_ X  /  x ]_ F  /\  dom  [_ X  /  x ]_ F  =  [_ X  /  x ]_ A ) )
129, 10, 113bitr4g 221 . 2  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( Fun  F  /\  dom  F  =  A )  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
133, 12bitrd 186 1  |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   [.wsbc 2815   [_csb 2908   dom cdm 4363   Fun wfun 4916    Fn wfn 4917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-fn 4925
This theorem is referenced by:  sbcfg  5065
  Copyright terms: Public domain W3C validator