| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbciegft | Unicode version | ||
| Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 2845.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbciegft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 2838 |
. . 3
| |
| 2 | bi1 116 |
. . . . . . . 8
| |
| 3 | 2 | imim2i 12 |
. . . . . . 7
|
| 4 | 3 | impd 251 |
. . . . . 6
|
| 5 | 4 | alimi 1384 |
. . . . 5
|
| 6 | 19.23t 1607 |
. . . . . 6
| |
| 7 | 6 | biimpa 290 |
. . . . 5
|
| 8 | 5, 7 | sylan2 280 |
. . . 4
|
| 9 | 8 | 3adant1 956 |
. . 3
|
| 10 | 1, 9 | syl5bi 150 |
. 2
|
| 11 | bi2 128 |
. . . . . . . 8
| |
| 12 | 11 | imim2i 12 |
. . . . . . 7
|
| 13 | 12 | com23 77 |
. . . . . 6
|
| 14 | 13 | alimi 1384 |
. . . . 5
|
| 15 | 19.21t 1514 |
. . . . . 6
| |
| 16 | 15 | biimpa 290 |
. . . . 5
|
| 17 | 14, 16 | sylan2 280 |
. . . 4
|
| 18 | 17 | 3adant1 956 |
. . 3
|
| 19 | sbc6g 2839 |
. . . 4
| |
| 20 | 19 | 3ad2ant1 959 |
. . 3
|
| 21 | 18, 20 | sylibrd 167 |
. 2
|
| 22 | 10, 21 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 |
| This theorem is referenced by: sbciegf 2845 sbciedf 2849 |
| Copyright terms: Public domain | W3C validator |