ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vlem Unicode version

Theorem sbco2vlem 1861
Description: This is a version of sbco2 1880 where  z is distinct from 
x and from  y. It is a lemma on the way to proving sbco2v 1862 which only requires that  z and  x be distinct. (Contributed by Jim Kingdon, 25-Dec-2017.) (One distinct variable constraint removed by Jim Kingdon, 3-Feb-2018.)
Hypothesis
Ref Expression
sbco2vlem.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
sbco2vlem  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2vlem
StepHypRef Expression
1 sbco2vlem.1 . . 3  |-  ( ph  ->  A. z ph )
21hbsbv 1858 . 2  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
3 sbequ 1761 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
42, 3sbieh 1713 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by:  sbco2v  1862
  Copyright terms: Public domain W3C validator