ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcreug Unicode version

Theorem sbcreug 2894
Description: Interchange class substitution and restricted uniqueness quantifier. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
sbcreug  |-  ( A  e.  V  ->  ( [. A  /  x ]. E! y  e.  B  ph  <->  E! y  e.  B  [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    V( x, y)

Proof of Theorem sbcreug
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2818 . 2  |-  ( z  =  A  ->  ( [ z  /  x ] E! y  e.  B  ph  <->  [. A  /  x ]. E! y  e.  B  ph ) )
2 dfsbcq2 2818 . . 3  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32reubidv 2537 . 2  |-  ( z  =  A  ->  ( E! y  e.  B  [ z  /  x ] ph  <->  E! y  e.  B  [. A  /  x ]. ph ) )
4 nfcv 2219 . . . 4  |-  F/_ x B
5 nfs1v 1856 . . . 4  |-  F/ x [ z  /  x ] ph
64, 5nfreuxy 2528 . . 3  |-  F/ x E! y  e.  B  [ z  /  x ] ph
7 sbequ12 1694 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
87reubidv 2537 . . 3  |-  ( x  =  z  ->  ( E! y  e.  B  ph  <->  E! y  e.  B  [
z  /  x ] ph ) )
96, 8sbie 1714 . 2  |-  ( [ z  /  x ] E! y  e.  B  ph  <->  E! y  e.  B  [
z  /  x ] ph )
101, 3, 9vtoclbg 2659 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. E! y  e.  B  ph  <->  E! y  e.  B  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284    e. wcel 1433   [wsb 1685   E!wreu 2350   [.wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-reu 2355  df-v 2603  df-sbc 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator