![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sps | Unicode version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sps |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1441 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sps.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-4 1440 |
This theorem is referenced by: 19.21ht 1513 exim 1530 alexdc 1550 19.2 1569 ax10o 1643 hbae 1646 cbv1h 1673 equvini 1681 equveli 1682 ax10oe 1718 drex1 1719 drsb1 1720 exdistrfor 1721 ax11v2 1741 equs5or 1751 sbequi 1760 drsb2 1762 spsbim 1764 sbcomxyyz 1887 hbsb4t 1930 mopick 2019 eupickbi 2023 ceqsalg 2627 mo2icl 2771 reu6 2781 sbcal 2865 csbie2t 2950 reldisj 3295 dfnfc2 3619 ssopab2 4030 eusvnfb 4204 mosubopt 4423 issref 4727 fv3 5218 fvmptt 5283 fnoprabg 5622 bj-exlimmp 10580 strcollnft 10779 |
Copyright terms: Public domain | W3C validator |