ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbralie Unicode version

Theorem sbralie 2590
Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
Hypothesis
Ref Expression
sbralie.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
sbralie  |-  ( [ x  /  y ] A. x  e.  y 
ph 
<-> 
A. y  e.  x  ps )
Distinct variable groups:    x, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem sbralie
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2588 . . . 4  |-  ( A. x  e.  y  ph  <->  A. z  e.  y  [
z  /  x ] ph )
21sbbii 1688 . . 3  |-  ( [ x  /  y ] A. x  e.  y 
ph 
<->  [ x  /  y ] A. z  e.  y  [ z  /  x ] ph )
3 nfv 1461 . . . 4  |-  F/ y A. z  e.  x  [ z  /  x ] ph
4 raleq 2549 . . . 4  |-  ( y  =  x  ->  ( A. z  e.  y  [ z  /  x ] ph  <->  A. z  e.  x  [ z  /  x ] ph ) )
53, 4sbie 1714 . . 3  |-  ( [ x  /  y ] A. z  e.  y  [ z  /  x ] ph  <->  A. z  e.  x  [ z  /  x ] ph )
62, 5bitri 182 . 2  |-  ( [ x  /  y ] A. x  e.  y 
ph 
<-> 
A. z  e.  x  [ z  /  x ] ph )
7 cbvralsv 2588 . . 3  |-  ( A. z  e.  x  [
z  /  x ] ph 
<-> 
A. y  e.  x  [ y  /  z ] [ z  /  x ] ph )
8 nfv 1461 . . . . . 6  |-  F/ z
ph
98sbco2 1880 . . . . 5  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
10 nfv 1461 . . . . . 6  |-  F/ x ps
11 sbralie.1 . . . . . 6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1210, 11sbie 1714 . . . . 5  |-  ( [ y  /  x ] ph 
<->  ps )
139, 12bitri 182 . . . 4  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  ps )
1413ralbii 2372 . . 3  |-  ( A. y  e.  x  [
y  /  z ] [ z  /  x ] ph  <->  A. y  e.  x  ps )
157, 14bitri 182 . 2  |-  ( A. z  e.  x  [
z  /  x ] ph 
<-> 
A. y  e.  x  ps )
166, 15bitri 182 1  |-  ( [ x  /  y ] A. x  e.  y 
ph 
<-> 
A. y  e.  x  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   [wsb 1685   A.wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator