| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sefvex | Unicode version | ||
| Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| sefvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 |
. . . . . . . 8
| |
| 2 | 1 | a1i 9 |
. . . . . . 7
|
| 3 | simp3 940 |
. . . . . . . 8
| |
| 4 | simp2 939 |
. . . . . . . . 9
| |
| 5 | brcnvg 4534 |
. . . . . . . . 9
| |
| 6 | 1, 4, 5 | sylancr 405 |
. . . . . . . 8
|
| 7 | 3, 6 | mpbird 165 |
. . . . . . 7
|
| 8 | breq1 3788 |
. . . . . . . 8
| |
| 9 | 8 | elrab 2749 |
. . . . . . 7
|
| 10 | 2, 7, 9 | sylanbrc 408 |
. . . . . 6
|
| 11 | elssuni 3629 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | 12 | 3expia 1140 |
. . . 4
|
| 14 | 13 | alrimiv 1795 |
. . 3
|
| 15 | fvss 5209 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | seex 4090 |
. . 3
| |
| 18 | uniexg 4193 |
. . 3
| |
| 19 | 17, 18 | syl 14 |
. 2
|
| 20 | ssexg 3917 |
. 2
| |
| 21 | 16, 19, 20 | syl2anc 403 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-se 4088 df-cnv 4371 df-iota 4887 df-fv 4930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |