ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2d Unicode version

Theorem simp2d 951
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
3simp1d.1  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
Assertion
Ref Expression
simp2d  |-  ( ph  ->  ch )

Proof of Theorem simp2d
StepHypRef Expression
1 3simp1d.1 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
2 simp2 939 . 2  |-  ( ( ps  /\  ch  /\  th )  ->  ch )
31, 2syl 14 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105
This theorem depends on definitions:  df-bi 115  df-3an 921
This theorem is referenced by:  simp2bi  954  erinxp  6203  addcanprleml  6804  addcanprlemu  6805  ltmprr  6832  lelttrdi  7530  ixxdisj  8926  ixxss1  8927  ixxss2  8928  ixxss12  8929  iccgelb  8955  iccss2  8967  icodisj  9014  ioom  9269  flqdiv  9323  mulqaddmodid  9366  modsumfzodifsn  9398  addmodlteq  9400  immul  9766
  Copyright terms: Public domain W3C validator