ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmprr Unicode version

Theorem ltmprr 6832
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
ltmprr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )

Proof of Theorem ltmprr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr 6828 . . . . 5  |-  ( C  e.  P.  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
213ad2ant3 961 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
32adantr 270 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  E. y  e.  P.  ( C  .P.  y )  =  1P )
4 ltexpri 6803 . . . . 5  |-  ( ( C  .P.  A ) 
<P  ( C  .P.  B
)  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
54ad2antlr 472 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  E. x  e.  P.  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) )
6 simplll 499 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
76simp1d 950 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  e.  P. )
8 simplrl 501 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  y  e.  P. )
9 simprl 497 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  x  e.  P. )
10 mulclpr 6762 . . . . . . 7  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  .P.  x
)  e.  P. )
118, 9, 10syl2anc 403 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  x )  e.  P. )
12 ltaddpr 6787 . . . . . 6  |-  ( ( A  e.  P.  /\  ( y  .P.  x
)  e.  P. )  ->  A  <P  ( A  +P.  ( y  .P.  x
) ) )
137, 11, 12syl2anc 403 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  ( A  +P.  (
y  .P.  x )
) )
14 simprr 498 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( C  .P.  A
)  +P.  x )  =  ( C  .P.  B ) )
1514oveq2d 5548 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( y  .P.  ( C  .P.  B ) ) )
166simp3d 952 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  C  e.  P. )
17 mulclpr 6762 . . . . . . . . 9  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  .P.  A
)  e.  P. )
1816, 7, 17syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  A )  e. 
P. )
19 distrprg 6778 . . . . . . . 8  |-  ( ( y  e.  P.  /\  ( C  .P.  A )  e.  P.  /\  x  e.  P. )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
208, 18, 9, 19syl3anc 1169 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
21 mulassprg 6771 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  A  e.  P. )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
228, 16, 7, 21syl3anc 1169 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( y  .P.  ( C  .P.  A
) ) )
2322oveq1d 5547 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( ( y  .P.  ( C  .P.  A
) )  +P.  (
y  .P.  x )
) )
24 mulcomprg 6770 . . . . . . . . . . . 12  |-  ( ( y  e.  P.  /\  C  e.  P. )  ->  ( y  .P.  C
)  =  ( C  .P.  y ) )
258, 16, 24syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  ( C  .P.  y ) )
26 simplrr 502 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( C  .P.  y )  =  1P )
2725, 26eqtrd 2113 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  C )  =  1P )
2827oveq1d 5547 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  ( 1P  .P.  A ) )
29 1pr 6744 . . . . . . . . . . . 12  |-  1P  e.  P.
30 mulcomprg 6770 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  .P.  1P )  =  ( 1P  .P.  A ) )
3129, 30mpan2 415 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  ( 1P  .P.  A
) )
32 1idpr 6782 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
3331, 32eqtr3d 2115 . . . . . . . . . 10  |-  ( A  e.  P.  ->  ( 1P  .P.  A )  =  A )
347, 33syl 14 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  A )  =  A )
3528, 34eqtrd 2113 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  A )  =  A )
3635oveq1d 5547 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( ( y  .P. 
C )  .P.  A
)  +P.  ( y  .P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3720, 23, 363eqtr2d 2119 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( ( C  .P.  A )  +P.  x ) )  =  ( A  +P.  (
y  .P.  x )
) )
3827oveq1d 5547 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( 1P  .P.  B ) )
396simp2d 951 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  B  e.  P. )
40 mulassprg 6771 . . . . . . . 8  |-  ( ( y  e.  P.  /\  C  e.  P.  /\  B  e.  P. )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
418, 16, 39, 40syl3anc 1169 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
( y  .P.  C
)  .P.  B )  =  ( y  .P.  ( C  .P.  B
) ) )
42 mulcomprg 6770 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  .P.  1P )  =  ( 1P  .P.  B ) )
4329, 42mpan2 415 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  ( 1P  .P.  B
) )
44 1idpr 6782 . . . . . . . . 9  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  B )
4543, 44eqtr3d 2115 . . . . . . . 8  |-  ( B  e.  P.  ->  ( 1P  .P.  B )  =  B )
4639, 45syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( 1P  .P.  B )  =  B )
4738, 41, 463eqtr3d 2121 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  (
y  .P.  ( C  .P.  B ) )  =  B )
4815, 37, 473eqtr3d 2121 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  ( A  +P.  ( y  .P.  x ) )  =  B )
4913, 48breqtrd 3809 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( C  .P.  A )  <P 
( C  .P.  B
) )  /\  (
y  e.  P.  /\  ( C  .P.  y )  =  1P ) )  /\  ( x  e. 
P.  /\  ( ( C  .P.  A )  +P.  x )  =  ( C  .P.  B ) ) )  ->  A  <P  B )
505, 49rexlimddv 2481 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A )  <P  ( C  .P.  B ) )  /\  ( y  e.  P.  /\  ( C  .P.  y
)  =  1P ) )  ->  A  <P  B )
513, 50rexlimddv 2481 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( C  .P.  A
)  <P  ( C  .P.  B ) )  ->  A  <P  B )
5251ex 113 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( C  .P.  A
)  <P  ( C  .P.  B )  ->  A  <P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   P.cnp 6481   1Pc1p 6482    +P. cpp 6483    .P. cmp 6484    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-iltp 6660
This theorem is referenced by:  mulextsr1lem  6956
  Copyright terms: Public domain W3C validator