ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss2 Unicode version

Theorem ixxss2 8928
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss2.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z T y ) } )
ixxss2.3  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w T B  /\  B W C )  ->  w S C ) )
Assertion
Ref Expression
ixxss2  |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
w, W
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    O( y, z)    W( x, y, z)

Proof of Theorem ixxss2
StepHypRef Expression
1 ixxss2.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z T y ) } )
21elixx3g 8924 . . . . . . 7  |-  ( w  e.  ( A P B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  /\  ( A R w  /\  w T B ) ) )
32simplbi 268 . . . . . 6  |-  ( w  e.  ( A P B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* ) )
43adantl 271 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( A  e.  RR*  /\  B  e. 
RR*  /\  w  e.  RR* ) )
54simp3d 952 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w  e.  RR* )
62simprbi 269 . . . . . 6  |-  ( w  e.  ( A P B )  ->  ( A R w  /\  w T B ) )
76adantl 271 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( A R w  /\  w T B ) )
87simpld 110 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  A R w )
97simprd 112 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w T B )
10 simplr 496 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  B W C )
114simp2d 951 . . . . . 6  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  B  e.  RR* )
12 simpll 495 . . . . . 6  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  C  e.  RR* )
13 ixxss2.3 . . . . . 6  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w T B  /\  B W C )  ->  w S C ) )
145, 11, 12, 13syl3anc 1169 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( (
w T B  /\  B W C )  ->  w S C ) )
159, 10, 14mp2and 423 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w S C )
164simp1d 950 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  A  e.  RR* )
17 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
1817elixx1 8920 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( A O C )  <->  ( w  e.  RR*  /\  A R w  /\  w S C ) ) )
1916, 12, 18syl2anc 403 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( w  e.  ( A O C )  <->  ( w  e. 
RR*  /\  A R w  /\  w S C ) ) )
205, 8, 15, 19mpbir3and 1121 . . 3  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w  e.  ( A O C ) )
2120ex 113 . 2  |-  ( ( C  e.  RR*  /\  B W C )  ->  (
w  e.  ( A P B )  ->  w  e.  ( A O C ) ) )
2221ssrdv 3005 1  |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   {crab 2352    C_ wss 2973   class class class wbr 3785  (class class class)co 5532    |-> cmpt2 5534   RR*cxr 7152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157
This theorem is referenced by:  iooss2  8940
  Copyright terms: Public domain W3C validator