| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxss2 | Unicode version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixxssixx.1 |
|
| ixxss2.2 |
|
| ixxss2.3 |
|
| Ref | Expression |
|---|---|
| ixxss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss2.2 |
. . . . . . . 8
| |
| 2 | 1 | elixx3g 8924 |
. . . . . . 7
|
| 3 | 2 | simplbi 268 |
. . . . . 6
|
| 4 | 3 | adantl 271 |
. . . . 5
|
| 5 | 4 | simp3d 952 |
. . . 4
|
| 6 | 2 | simprbi 269 |
. . . . . 6
|
| 7 | 6 | adantl 271 |
. . . . 5
|
| 8 | 7 | simpld 110 |
. . . 4
|
| 9 | 7 | simprd 112 |
. . . . 5
|
| 10 | simplr 496 |
. . . . 5
| |
| 11 | 4 | simp2d 951 |
. . . . . 6
|
| 12 | simpll 495 |
. . . . . 6
| |
| 13 | ixxss2.3 |
. . . . . 6
| |
| 14 | 5, 11, 12, 13 | syl3anc 1169 |
. . . . 5
|
| 15 | 9, 10, 14 | mp2and 423 |
. . . 4
|
| 16 | 4 | simp1d 950 |
. . . . 5
|
| 17 | ixxssixx.1 |
. . . . . 6
| |
| 18 | 17 | elixx1 8920 |
. . . . 5
|
| 19 | 16, 12, 18 | syl2anc 403 |
. . . 4
|
| 20 | 5, 8, 15, 19 | mpbir3and 1121 |
. . 3
|
| 21 | 20 | ex 113 |
. 2
|
| 22 | 21 | ssrdv 3005 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 |
| This theorem is referenced by: iooss2 8940 |
| Copyright terms: Public domain | W3C validator |