ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqdiv Unicode version

Theorem flqdiv 9323
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
flqdiv  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )

Proof of Theorem flqdiv
StepHypRef Expression
1 eqid 2081 . . . . . . . . 9  |-  ( |_
`  A )  =  ( |_ `  A
)
2 eqid 2081 . . . . . . . . 9  |-  ( A  -  ( |_ `  A ) )  =  ( A  -  ( |_ `  A ) )
31, 2intqfrac2 9321 . . . . . . . 8  |-  ( A  e.  QQ  ->  (
0  <_  ( A  -  ( |_ `  A ) )  /\  ( A  -  ( |_ `  A ) )  <  1  /\  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) ) )
43simp3d 952 . . . . . . 7  |-  ( A  e.  QQ  ->  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) )
54adantr 270 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  =  ( ( |_ `  A )  +  ( A  -  ( |_ `  A ) ) ) )
65oveq1d 5547 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  +  ( A  -  ( |_ `  A ) ) )  /  N ) )
7 simpl 107 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  A  e.  QQ )
87flqcld 9279 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  ZZ )
98zcnd 8470 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  CC )
10 zq 8711 . . . . . . . 8  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
118, 10syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  QQ )
12 qsubcl 8723 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  QQ )
13 qcn 8719 . . . . . . . 8  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  CC )
1412, 13syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( A  -  ( |_ `  A ) )  e.  CC )
1511, 14syldan 276 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  CC )
16 simpr 108 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  NN )
1716nncnd 8053 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  CC )
1816nnap0d 8084 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N #  0 )
199, 15, 17, 18divdirapd 7915 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) )  /  N )  =  ( ( ( |_ `  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
206, 19eqtrd 2113 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
21 flqcl 9277 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
22 eqid 2081 . . . . . . . 8  |-  ( |_
`  ( ( |_
`  A )  /  N ) )  =  ( |_ `  (
( |_ `  A
)  /  N ) )
23 eqid 2081 . . . . . . . 8  |-  ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  =  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )
2422, 23intfracq 9322 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  /\  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N )  /\  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) ) )
2524simp3d 952 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2621, 25sylan 277 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2726oveq1d 5547 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  =  ( ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
28 znq 8709 . . . . . . . 8  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
2928flqcld 9279 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3021, 29sylan 277 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
3130zcnd 8470 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  CC )
328, 16, 28syl2anc 403 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  QQ )
33 zq 8711 . . . . . . . 8  |-  ( ( |_ `  ( ( |_ `  A )  /  N ) )  e.  ZZ  ->  ( |_ `  ( ( |_
`  A )  /  N ) )  e.  QQ )
3430, 33syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  QQ )
35 qsubcl 8723 . . . . . . 7  |-  ( ( ( ( |_ `  A )  /  N
)  e.  QQ  /\  ( |_ `  ( ( |_ `  A )  /  N ) )  e.  QQ )  -> 
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
3632, 34, 35syl2anc 403 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ )
37 qcn 8719 . . . . . 6  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3836, 37syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3911, 12syldan 276 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  QQ )
40 nnq 8718 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  QQ )
4140adantl 271 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  QQ )
4216nnne0d 8083 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  =/=  0 )
43 qdivcl 8728 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  QQ  /\  N  e.  QQ  /\  N  =/=  0 )  ->  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
4439, 41, 42, 43syl3anc 1169 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ )
45 qcn 8719 . . . . . 6  |-  ( ( ( A  -  ( |_ `  A ) )  /  N )  e.  QQ  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4644, 45syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4731, 38, 46addassd 7141 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  =  ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) ) ) )
4820, 27, 473eqtrd 2117 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )
4948fveq2d 5202 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  ( A  /  N ) )  =  ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) ) )
50 qre 8710 . . . . 5  |-  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  QQ  ->  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  e.  RR )
5136, 50syl 14 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  RR )
52 qre 8710 . . . . . 6  |-  ( ( A  -  ( |_
`  A ) )  e.  QQ  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5339, 52syl 14 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  RR )
5453, 16nndivred 8088 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  RR )
5524simp1d 950 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5621, 55sylan 277 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
5716nnrpd 8772 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR+ )
58 qfracge0 9283 . . . . . 6  |-  ( A  e.  QQ  ->  0  <_  ( A  -  ( |_ `  A ) ) )
5958adantr 270 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( A  -  ( |_ `  A ) ) )
6053, 57, 59divge0d 8814 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( ( A  -  ( |_ `  A ) )  /  N ) )
6151, 54, 56, 60addge0d 7622 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <_  ( (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
62 nnre 8046 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
63 peano2rem 7375 . . . . . . . 8  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
6462, 63syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
65 nnap0 8068 . . . . . . 7  |-  ( N  e.  NN  ->  N #  0 )
6664, 62, 65redivclapd 7920 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  e.  RR )
6766adantl 271 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( N  - 
1 )  /  N
)  e.  RR )
6816nnrecred 8085 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( 1  /  N
)  e.  RR )
6924simp2d 951 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
7021, 69sylan 277 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
71 qfraclt1 9282 . . . . . . 7  |-  ( A  e.  QQ  ->  ( A  -  ( |_ `  A ) )  <  1 )
7271adantr 270 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  <  1 )
7316nnred 8052 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  N  e.  RR )
7416nngt0d 8082 . . . . . . 7  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  0  <  N )
75 1re 7118 . . . . . . . 8  |-  1  e.  RR
76 ltdiv1 7946 . . . . . . . 8  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7775, 76mp3an2 1256 . . . . . . 7  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7853, 73, 74, 77syl12anc 1167 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
7972, 78mpbid 145 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  <  ( 1  /  N ) )
8051, 54, 67, 68, 70, 79leltaddd 7666 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
81 nncn 8047 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
82 npcan1 7482 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
8381, 82syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
8483oveq1d 5547 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( N  /  N ) )
8564recnd 7147 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
86 ax-1cn 7069 . . . . . . . 8  |-  1  e.  CC
87 divdirap 7785 . . . . . . . 8  |-  ( ( ( N  -  1 )  e.  CC  /\  1  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  -> 
( ( ( N  -  1 )  +  1 )  /  N
)  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) ) )
8886, 87mp3an2 1256 . . . . . . 7  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  e.  CC  /\  N #  0 ) )  ->  ( ( ( N  -  1 )  +  1 )  /  N )  =  ( ( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) ) )
8985, 81, 65, 88syl12anc 1167 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
9081, 65dividapd 7874 . . . . . 6  |-  ( N  e.  NN  ->  ( N  /  N )  =  1 )
9184, 89, 903eqtr3d 2121 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) )  =  1 )
9291adantl 271 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) )  =  1 )
9380, 92breqtrd 3809 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  1 )
9432flqcld 9279 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
95 qaddcl 8720 . . . . 5  |-  ( ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  QQ  /\  (
( A  -  ( |_ `  A ) )  /  N )  e.  QQ )  ->  (
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  e.  QQ )
9636, 44, 95syl2anc 403 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )
97 flqbi2 9293 . . . 4  |-  ( ( ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ  /\  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  QQ )  -> 
( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9894, 96, 97syl2anc 403 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
9961, 93, 98mpbir2and 885 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  (
( |_ `  A
)  /  N ) )  +  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) ) )
10049, 99eqtr2d 2114 1  |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    - cmin 7279   # cap 7681    / cdiv 7760   NNcn 8039   ZZcz 8351   QQcq 8704   |_cfl 9272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274
This theorem is referenced by:  modqmulnn  9344
  Copyright terms: Public domain W3C validator