| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqdiv | Unicode version | ||
| Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqdiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2081 |
. . . . . . . . 9
| |
| 2 | eqid 2081 |
. . . . . . . . 9
| |
| 3 | 1, 2 | intqfrac2 9321 |
. . . . . . . 8
|
| 4 | 3 | simp3d 952 |
. . . . . . 7
|
| 5 | 4 | adantr 270 |
. . . . . 6
|
| 6 | 5 | oveq1d 5547 |
. . . . 5
|
| 7 | simpl 107 |
. . . . . . . 8
| |
| 8 | 7 | flqcld 9279 |
. . . . . . 7
|
| 9 | 8 | zcnd 8470 |
. . . . . 6
|
| 10 | zq 8711 |
. . . . . . . 8
| |
| 11 | 8, 10 | syl 14 |
. . . . . . 7
|
| 12 | qsubcl 8723 |
. . . . . . . 8
| |
| 13 | qcn 8719 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 11, 14 | syldan 276 |
. . . . . 6
|
| 16 | simpr 108 |
. . . . . . 7
| |
| 17 | 16 | nncnd 8053 |
. . . . . 6
|
| 18 | 16 | nnap0d 8084 |
. . . . . 6
|
| 19 | 9, 15, 17, 18 | divdirapd 7915 |
. . . . 5
|
| 20 | 6, 19 | eqtrd 2113 |
. . . 4
|
| 21 | flqcl 9277 |
. . . . . 6
| |
| 22 | eqid 2081 |
. . . . . . . 8
| |
| 23 | eqid 2081 |
. . . . . . . 8
| |
| 24 | 22, 23 | intfracq 9322 |
. . . . . . 7
|
| 25 | 24 | simp3d 952 |
. . . . . 6
|
| 26 | 21, 25 | sylan 277 |
. . . . 5
|
| 27 | 26 | oveq1d 5547 |
. . . 4
|
| 28 | znq 8709 |
. . . . . . . 8
| |
| 29 | 28 | flqcld 9279 |
. . . . . . 7
|
| 30 | 21, 29 | sylan 277 |
. . . . . 6
|
| 31 | 30 | zcnd 8470 |
. . . . 5
|
| 32 | 8, 16, 28 | syl2anc 403 |
. . . . . . 7
|
| 33 | zq 8711 |
. . . . . . . 8
| |
| 34 | 30, 33 | syl 14 |
. . . . . . 7
|
| 35 | qsubcl 8723 |
. . . . . . 7
| |
| 36 | 32, 34, 35 | syl2anc 403 |
. . . . . 6
|
| 37 | qcn 8719 |
. . . . . 6
| |
| 38 | 36, 37 | syl 14 |
. . . . 5
|
| 39 | 11, 12 | syldan 276 |
. . . . . . 7
|
| 40 | nnq 8718 |
. . . . . . . 8
| |
| 41 | 40 | adantl 271 |
. . . . . . 7
|
| 42 | 16 | nnne0d 8083 |
. . . . . . 7
|
| 43 | qdivcl 8728 |
. . . . . . 7
| |
| 44 | 39, 41, 42, 43 | syl3anc 1169 |
. . . . . 6
|
| 45 | qcn 8719 |
. . . . . 6
| |
| 46 | 44, 45 | syl 14 |
. . . . 5
|
| 47 | 31, 38, 46 | addassd 7141 |
. . . 4
|
| 48 | 20, 27, 47 | 3eqtrd 2117 |
. . 3
|
| 49 | 48 | fveq2d 5202 |
. 2
|
| 50 | qre 8710 |
. . . . 5
| |
| 51 | 36, 50 | syl 14 |
. . . 4
|
| 52 | qre 8710 |
. . . . . 6
| |
| 53 | 39, 52 | syl 14 |
. . . . 5
|
| 54 | 53, 16 | nndivred 8088 |
. . . 4
|
| 55 | 24 | simp1d 950 |
. . . . 5
|
| 56 | 21, 55 | sylan 277 |
. . . 4
|
| 57 | 16 | nnrpd 8772 |
. . . . 5
|
| 58 | qfracge0 9283 |
. . . . . 6
| |
| 59 | 58 | adantr 270 |
. . . . 5
|
| 60 | 53, 57, 59 | divge0d 8814 |
. . . 4
|
| 61 | 51, 54, 56, 60 | addge0d 7622 |
. . 3
|
| 62 | nnre 8046 |
. . . . . . . 8
| |
| 63 | peano2rem 7375 |
. . . . . . . 8
| |
| 64 | 62, 63 | syl 14 |
. . . . . . 7
|
| 65 | nnap0 8068 |
. . . . . . 7
| |
| 66 | 64, 62, 65 | redivclapd 7920 |
. . . . . 6
|
| 67 | 66 | adantl 271 |
. . . . 5
|
| 68 | 16 | nnrecred 8085 |
. . . . 5
|
| 69 | 24 | simp2d 951 |
. . . . . 6
|
| 70 | 21, 69 | sylan 277 |
. . . . 5
|
| 71 | qfraclt1 9282 |
. . . . . . 7
| |
| 72 | 71 | adantr 270 |
. . . . . 6
|
| 73 | 16 | nnred 8052 |
. . . . . . 7
|
| 74 | 16 | nngt0d 8082 |
. . . . . . 7
|
| 75 | 1re 7118 |
. . . . . . . 8
| |
| 76 | ltdiv1 7946 |
. . . . . . . 8
| |
| 77 | 75, 76 | mp3an2 1256 |
. . . . . . 7
|
| 78 | 53, 73, 74, 77 | syl12anc 1167 |
. . . . . 6
|
| 79 | 72, 78 | mpbid 145 |
. . . . 5
|
| 80 | 51, 54, 67, 68, 70, 79 | leltaddd 7666 |
. . . 4
|
| 81 | nncn 8047 |
. . . . . . . 8
| |
| 82 | npcan1 7482 |
. . . . . . . 8
| |
| 83 | 81, 82 | syl 14 |
. . . . . . 7
|
| 84 | 83 | oveq1d 5547 |
. . . . . 6
|
| 85 | 64 | recnd 7147 |
. . . . . . 7
|
| 86 | ax-1cn 7069 |
. . . . . . . 8
| |
| 87 | divdirap 7785 |
. . . . . . . 8
| |
| 88 | 86, 87 | mp3an2 1256 |
. . . . . . 7
|
| 89 | 85, 81, 65, 88 | syl12anc 1167 |
. . . . . 6
|
| 90 | 81, 65 | dividapd 7874 |
. . . . . 6
|
| 91 | 84, 89, 90 | 3eqtr3d 2121 |
. . . . 5
|
| 92 | 91 | adantl 271 |
. . . 4
|
| 93 | 80, 92 | breqtrd 3809 |
. . 3
|
| 94 | 32 | flqcld 9279 |
. . . 4
|
| 95 | qaddcl 8720 |
. . . . 5
| |
| 96 | 36, 44, 95 | syl2anc 403 |
. . . 4
|
| 97 | flqbi2 9293 |
. . . 4
| |
| 98 | 94, 96, 97 | syl2anc 403 |
. . 3
|
| 99 | 61, 93, 98 | mpbir2and 885 |
. 2
|
| 100 | 49, 99 | eqtr2d 2114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-q 8705 df-rp 8735 df-fl 9274 |
| This theorem is referenced by: modqmulnn 9344 |
| Copyright terms: Public domain | W3C validator |