ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfiexmid Unicode version

Theorem ssfiexmid 6361
Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
Hypothesis
Ref Expression
ssfiexmid.1  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
Assertion
Ref Expression
ssfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ssfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 3905 . . . 4  |-  (/)  e.  _V
2 snfig 6314 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 7 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3079 . . 3  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssfiexmid.1 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
6 p0ex 3959 . . . . . 6  |-  { (/) }  e.  _V
7 eleq1 2141 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
8 sseq2 3021 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  C_  x  <->  y  C_  {
(/) } ) )
97, 8anbi12d 456 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  C_  x )  <->  ( { (/) }  e.  Fin  /\  y  C_  { (/) } ) ) )
109imbi1d 229 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  C_  x )  ->  y  e.  Fin )  <->  ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) ) )
1110albidv 1745 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) ) )
126, 11spcv 2691 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) )
135, 12ax-mp 7 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  C_ 
{ (/) } )  -> 
y  e.  Fin )
146rabex 3922 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
15 sseq1 3020 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
1615anbi2d 451 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  C_  { (/) } ) ) )
17 eleq1 2141 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
1816, 17imbi12d 232 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  C_  {
(/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
1914, 18spcv 2691 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  C_ 
{ (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2013, 19ax-mp 7 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  C_ 
{ (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
213, 4, 20mp2an 416 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2221ssfilem 6360 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 661   A.wal 1282    = wceq 1284    e. wcel 1433   {crab 2352   _Vcvv 2601    C_ wss 2973   (/)c0 3251   {csn 3398   Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1o 6024  df-er 6129  df-en 6245  df-fin 6247
This theorem is referenced by:  infiexmid  6362
  Copyright terms: Public domain W3C validator