ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssoprab2i Unicode version

Theorem ssoprab2i 5613
Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
ssoprab2i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ssoprab2i  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  { <. <. x ,  y >. ,  z
>.  |  ps }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem ssoprab2i
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssoprab2i.1 . . . . 5  |-  ( ph  ->  ps )
21anim2i 334 . . . 4  |-  ( ( w  =  <. x ,  y >.  /\  ph )  ->  ( w  = 
<. x ,  y >.  /\  ps ) )
322eximi 1532 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph )  ->  E. x E. y
( w  =  <. x ,  y >.  /\  ps ) )
43ssopab2i 4032 . 2  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) } 
C_  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ps ) }
5 dfoprab2 5572 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
6 dfoprab2 5572 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ps ) }
74, 5, 63sstr4i 3038 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  { <. <. x ,  y >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    C_ wss 2973   <.cop 3401   {copab 3838   {coprab 5533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-oprab 5536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator