ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submul2 Unicode version

Theorem submul2 7503
Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
submul2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )

Proof of Theorem submul2
StepHypRef Expression
1 mulneg2 7500 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  -u C
)  =  -u ( B  x.  C )
)
21adantl 271 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( B  x.  -u C )  = 
-u ( B  x.  C ) )
32oveq2d 5548 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  +  ( B  x.  -u C ) )  =  ( A  +  -u ( B  x.  C
) ) )
4 mulcl 7100 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
5 negsub 7356 . . . 4  |-  ( ( A  e.  CC  /\  ( B  x.  C
)  e.  CC )  ->  ( A  +  -u ( B  x.  C
) )  =  ( A  -  ( B  x.  C ) ) )
64, 5sylan2 280 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  +  -u ( B  x.  C ) )  =  ( A  -  ( B  x.  C )
) )
73, 6eqtr2d 2114 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )
873impb 1134 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979    + caddc 6984    x. cmul 6986    - cmin 7279   -ucneg 7280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-neg 7282
This theorem is referenced by:  cjap  9793
  Copyright terms: Public domain W3C validator