| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supsnti | Unicode version | ||
| Description: The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| supsnti.ti |
|
| supsnti.b |
|
| Ref | Expression |
|---|---|
| supsnti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supsnti.ti |
. 2
| |
| 2 | supsnti.b |
. 2
| |
| 3 | snidg 3423 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | eqid 2081 |
. . . . . 6
| |
| 6 | 1 | ralrimivva 2443 |
. . . . . . 7
|
| 7 | eqeq1 2087 |
. . . . . . . . . 10
| |
| 8 | breq1 3788 |
. . . . . . . . . . . 12
| |
| 9 | 8 | notbid 624 |
. . . . . . . . . . 11
|
| 10 | breq2 3789 |
. . . . . . . . . . . 12
| |
| 11 | 10 | notbid 624 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | anbi12d 456 |
. . . . . . . . . 10
|
| 13 | 7, 12 | bibi12d 233 |
. . . . . . . . 9
|
| 14 | eqeq2 2090 |
. . . . . . . . . 10
| |
| 15 | breq2 3789 |
. . . . . . . . . . . 12
| |
| 16 | 15 | notbid 624 |
. . . . . . . . . . 11
|
| 17 | breq1 3788 |
. . . . . . . . . . . 12
| |
| 18 | 17 | notbid 624 |
. . . . . . . . . . 11
|
| 19 | 16, 18 | anbi12d 456 |
. . . . . . . . . 10
|
| 20 | 14, 19 | bibi12d 233 |
. . . . . . . . 9
|
| 21 | 13, 20 | rspc2v 2713 |
. . . . . . . 8
|
| 22 | 2, 2, 21 | syl2anc 403 |
. . . . . . 7
|
| 23 | 6, 22 | mpd 13 |
. . . . . 6
|
| 24 | 5, 23 | mpbii 146 |
. . . . 5
|
| 25 | 24 | simpld 110 |
. . . 4
|
| 26 | 25 | adantr 270 |
. . 3
|
| 27 | elsni 3416 |
. . . . . 6
| |
| 28 | 27 | breq2d 3797 |
. . . . 5
|
| 29 | 28 | notbid 624 |
. . . 4
|
| 30 | 29 | adantl 271 |
. . 3
|
| 31 | 26, 30 | mpbird 165 |
. 2
|
| 32 | 1, 2, 4, 31 | supmaxti 6417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-riota 5488 df-sup 6397 |
| This theorem is referenced by: infsnti 6443 |
| Copyright terms: Public domain | W3C validator |