HomeHome Intuitionistic Logic Explorer
Theorem List (p. 65 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6401-6500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsupeq1i 6401 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  B  =  C   =>    |-  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
 
Theoremsupeq2 6402 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( B  =  C  ->  sup ( A ,  B ,  R )  =  sup ( A ,  C ,  R )
 )
 
Theoremsupeq3 6403 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
 |-  ( R  =  S  ->  sup ( A ,  B ,  R )  =  sup ( A ,  B ,  S )
 )
 
Theoremsupeq123d 6404 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  ->  sup ( A ,  B ,  C )  =  sup ( D ,  E ,  F ) )
 
Theoremnfsup 6405 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x R   =>    |-  F/_ x sup ( A ,  B ,  R )
 
Theoremsupmoti 6406* Any class  B has at most one supremum in  A (where  R is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7191) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
 
Theoremsupeuti 6407* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  E! x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
 
Theoremsupval2ti 6408* Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  (
 iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
 
Theoremeqsupti 6409* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
 y R C  ->  E. z  e.  B  y R z ) ) 
 ->  sup ( B ,  A ,  R )  =  C ) )
 
Theoremeqsuptid 6410* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  -.  C R y )   &    |-  ( ( ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
 
Theoremsupclti 6411* A supremum belongs to its base class (closure law). See also supubti 6412 and suplubti 6413. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  e.  A )
 
Theoremsupubti 6412* A supremum is an upper bound. See also supclti 6411 and suplubti 6413.

This proof demonstrates how to expand an iota-based definition (df-iota 4887) using riotacl2 5501.

(Contributed by Jim Kingdon, 24-Nov-2021.)

 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  ( C  e.  B  ->  -. 
 sup ( B ,  A ,  R ) R C ) )
 
Theoremsuplubti 6413* A supremum is the least upper bound. See also supclti 6411 and supubti 6412. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  C R sup ( B ,  A ,  R ) )  ->  E. z  e.  B  C R z ) )
 
Theoremsuplub2ti 6414* Bidirectional form of suplubti 6413. (Contributed by Jim Kingdon, 17-Jan-2022.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   &    |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  B  C_  A )   =>    |-  ( ( ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R ) 
 <-> 
 E. z  e.  B  C R z ) )
 
Theoremsupelti 6415* Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  C  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   &    |-  ( ph  ->  C  C_  A )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  e.  C )
 
Theoremsup00 6416 The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
 |- 
 sup ( B ,  (/)
 ,  R )  =  (/)
 
Theoremsupmaxti 6417* The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  C  e.  B )   &    |-  (
 ( ph  /\  y  e.  B )  ->  -.  C R y )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
 
Theoremsupsnti 6418* The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  sup ( { B } ,  A ,  R )  =  B )
 
Theoremisotilem 6419* Lemma for isoti 6420. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( F  Isom  R ,  S  ( A ,  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  =  y  <->  ( -.  x S y  /\  -.  y S x ) )  ->  A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) ) )
 
Theoremisoti 6420* An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( F  Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
 
Theoremsupisolem 6421* Lemma for supisoti 6423. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   =>    |-  ( ( ph  /\  D  e.  A ) 
 ->  ( ( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w 
 /\  A. w  e.  B  ( w S ( F `
  D )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
 
Theoremsupisoex 6422* Lemma for supisoti 6423. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )   =>    |-  ( ph  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w 
 /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C ) w S v ) ) )
 
Theoremsupisoti 6423* Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )   &    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  sup ( ( F " C ) ,  B ,  S )  =  ( F ` 
 sup ( C ,  A ,  R )
 ) )
 
Theoreminfeq1 6424 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( B  =  C  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
 
Theoreminfeq1d 6425 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
 
Theoreminfeq1i 6426 Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  B  =  C   =>    |- inf ( B ,  A ,  R )  = inf ( C ,  A ,  R )
 
Theoreminfeq2 6427 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( B  =  C  -> inf ( A ,  B ,  R )  = inf ( A ,  C ,  R ) )
 
Theoreminfeq3 6428 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( R  =  S  -> inf ( A ,  B ,  R )  = inf ( A ,  B ,  S ) )
 
Theoreminfeq123d 6429 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  -> inf ( A ,  B ,  C )  = inf ( D ,  E ,  F ) )
 
Theoremnfinf 6430 Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x R   =>    |-  F/_ xinf ( A ,  B ,  R )
 
Theoremcnvinfex 6431* Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.)
 |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x `' R y 
 /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
 
Theoremcnvti 6432* If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u `' R v  /\  -.  v `' R u ) ) )
 
Theoremeqinfti 6433* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) )  -> inf ( B ,  A ,  R )  =  C )
 )
 
Theoremeqinftid 6434* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  -.  y R C )   &    |-  ( ( ph  /\  (
 y  e.  A  /\  C R y ) ) 
 ->  E. z  e.  B  z R y )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
 
Theoreminfvalti 6435* Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) ) )
 
Theoreminfclti 6436* An infimum belongs to its base class (closure law). See also inflbti 6437 and infglbti 6438. (Contributed by Jim Kingdon, 17-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  e.  A )
 
Theoreminflbti 6437* An infimum is a lower bound. See also infclti 6436 and infglbti 6438. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
 
Theoreminfglbti 6438* An infimum is the greatest lower bound. See also infclti 6436 and inflbti 6437. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\ inf ( B ,  A ,  R ) R C )  ->  E. z  e.  B  z R C ) )
 
Theoreminfnlbti 6439* A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  A. z  e.  B  -.  z R C ) 
 ->  -. inf ( B ,  A ,  R ) R C ) )
 
Theoreminfminti 6440* The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  C  e.  B )   &    |-  (
 ( ph  /\  y  e.  B )  ->  -.  y R C )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
 
Theoreminfmoti 6441* Any class  B has at most one infimum in  A (where  R is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
 
Theoreminfeuti 6442* An infimum is unique. (Contributed by Jim Kingdon, 19-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  E! x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
 
Theoreminfsnti 6443* The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  -> inf ( { B } ,  A ,  R )  =  B )
 
Theoreminf00 6444 The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
 |- inf
 ( B ,  (/) ,  R )  =  (/)
 
Theoreminfisoti 6445* Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )   &    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
 
2.6.29  Ordinal isomorphism
 
Theoremordiso2 6446 Generalize ordiso 6447 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( F  Isom  _E 
 ,  _E  ( A ,  B )  /\  Ord 
 A  /\  Ord  B ) 
 ->  A  =  B )
 
Theoremordiso 6447* Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B 
 <-> 
 E. f  f  Isom  _E 
 ,  _E  ( A ,  B ) ) )
 
2.6.30  Cardinal numbers
 
Syntaxccrd 6448 Extend class definition to include the cardinal size function.
 class  card
 
Definitiondf-card 6449* Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.)
 |- 
 card  =  ( x  e.  _V  |->  |^| { y  e. 
 On  |  y  ~~  x } )
 
Theoremcardcl 6450* The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. y  e. 
 On  y  ~~  A  ->  ( card `  A )  e.  On )
 
Theoremisnumi 6451 A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card
 )
 
Theoremfinnum 6452 Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  Fin  ->  A  e.  dom  card )
 
Theoremonenon 6453 Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
 |-  ( A  e.  On  ->  A  e.  dom  card )
 
Theoremcardval3ex 6454* The value of  ( card `  A
). (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  x  ~~  A  ->  ( card `  A )  =  |^| { y  e. 
 On  |  y  ~~  A } )
 
Theoremoncardval 6455* The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
 |-  ( A  e.  On  ->  ( card `  A )  =  |^| { x  e. 
 On  |  x  ~~  A } )
 
Theoremcardonle 6456 The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
 |-  ( A  e.  On  ->  ( card `  A )  C_  A )
 
Theoremcard0 6457 The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
 |-  ( card `  (/) )  =  (/)
 
Theoremcarden2bex 6458* If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  ~~  B  /\  E. x  e. 
 On  x  ~~  A )  ->  ( card `  A )  =  ( card `  B ) )
 
Theorempm54.43 6459 Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
 |-  ( ( A  ~~  1o  /\  B  ~~  1o )  ->  ( ( A  i^i  B )  =  (/) 
 <->  ( A  u.  B )  ~~  2o ) )
 
Theorempr2nelem 6460 Lemma for pr2ne 6461. (Contributed by FL, 17-Aug-2008.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B ) 
 ->  { A ,  B }  ~~  2o )
 
Theorempr2ne 6461 If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
 
PART 3  REAL AND COMPLEX NUMBERS

This section derives the basics of real and complex numbers.

To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6076 and similar theorems ), going from there to positive integers (df-ni 6494) and then positive rational numbers (df-nqqs 6538) does not involve a major change in approach compared with the Metamath Proof Explorer.

It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle. With excluded middle, it is natural to define the cut as the lower set only (as Metamath Proof Explorer does), but we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero".

 
3.1  Construction and axiomatization of real and complex numbers
 
3.1.1  Dedekind-cut construction of real and complex numbers
 
Syntaxcnpi 6462 The set of positive integers, which is the set of natural numbers  om with 0 removed.

Note: This is the start of the Dedekind-cut construction of real and _complex numbers.

 class  N.
 
Syntaxcpli 6463 Positive integer addition.
 class  +N
 
Syntaxcmi 6464 Positive integer multiplication.
 class  .N
 
Syntaxclti 6465 Positive integer ordering relation.
 class  <N
 
Syntaxcplpq 6466 Positive pre-fraction addition.
 class  +pQ
 
Syntaxcmpq 6467 Positive pre-fraction multiplication.
 class  .pQ
 
Syntaxcltpq 6468 Positive pre-fraction ordering relation.
 class  <pQ
 
Syntaxceq 6469 Equivalence class used to construct positive fractions.
 class  ~Q
 
Syntaxcnq 6470 Set of positive fractions.
 class  Q.
 
Syntaxc1q 6471 The positive fraction constant 1.
 class  1Q
 
Syntaxcplq 6472 Positive fraction addition.
 class  +Q
 
Syntaxcmq 6473 Positive fraction multiplication.
 class  .Q
 
Syntaxcrq 6474 Positive fraction reciprocal operation.
 class  *Q
 
Syntaxcltq 6475 Positive fraction ordering relation.
 class  <Q
 
Syntaxceq0 6476 Equivalence class used to construct non-negative fractions.
 class ~Q0
 
Syntaxcnq0 6477 Set of non-negative fractions.
 class Q0
 
Syntaxc0q0 6478 The non-negative fraction constant 0.
 class 0Q0
 
Syntaxcplq0 6479 Non-negative fraction addition.
 class +Q0
 
Syntaxcmq0 6480 Non-negative fraction multiplication.
 class ·Q0
 
Syntaxcnp 6481 Set of positive reals.
 class  P.
 
Syntaxc1p 6482 Positive real constant 1.
 class  1P
 
Syntaxcpp 6483 Positive real addition.
 class  +P.
 
Syntaxcmp 6484 Positive real multiplication.
 class  .P.
 
Syntaxcltp 6485 Positive real ordering relation.
 class  <P
 
Syntaxcer 6486 Equivalence class used to construct signed reals.
 class  ~R
 
Syntaxcnr 6487 Set of signed reals.
 class  R.
 
Syntaxc0r 6488 The signed real constant 0.
 class  0R
 
Syntaxc1r 6489 The signed real constant 1.
 class  1R
 
Syntaxcm1r 6490 The signed real constant -1.
 class  -1R
 
Syntaxcplr 6491 Signed real addition.
 class  +R
 
Syntaxcmr 6492 Signed real multiplication.
 class  .R
 
Syntaxcltr 6493 Signed real ordering relation.
 class  <R
 
Definitiondf-ni 6494 Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.)
 |- 
 N.  =  ( om  \  { (/) } )
 
Definitiondf-pli 6495 Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 +N  =  (  +o  |`  ( N.  X.  N. ) )
 
Definitiondf-mi 6496 Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 .N  =  (  .o  |`  ( N.  X.  N. ) )
 
Definitiondf-lti 6497 Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.)
 |- 
 <N  =  (  _E  i^i  ( N.  X.  N. ) )
 
Theoremelni 6498 Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/= 
 (/) ) )
 
Theorempinn 6499 A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  ->  A  e.  om )
 
Theorempion 6500 A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
 |-  ( A  e.  N.  ->  A  e.  On )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >