ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab2 Unicode version

Theorem resopab2 4675
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.)
Assertion
Ref Expression
resopab2  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab2
StepHypRef Expression
1 resopab 4672 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) }
2 ssel 2993 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
32pm4.71d 385 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  B ) ) )
43anbi1d 452 . . . 4  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  ph ) ) )
5 anass 393 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ph )  <->  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) )
64, 5syl6rbb 195 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  ph )
) )
76opabbidv 3844 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ( x  e.  B  /\  ph ) ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
81, 7syl5eq 2125 1  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433    C_ wss 2973   {copab 3838    |` cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-rel 4370  df-res 4375
This theorem is referenced by:  resmpt  4676
  Copyright terms: Public domain W3C validator