ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3-2 Unicode version

Theorem tfrlem3-2 5950
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 17-Apr-2019.)
Hypothesis
Ref Expression
tfrlem3-2.1  |-  ( Fun 
F  /\  ( F `  x )  e.  _V )
Assertion
Ref Expression
tfrlem3-2  |-  ( Fun 
F  /\  ( F `  g )  e.  _V )
Distinct variable group:    x, g, F

Proof of Theorem tfrlem3-2
StepHypRef Expression
1 fveq2 5198 . . . 4  |-  ( x  =  g  ->  ( F `  x )  =  ( F `  g ) )
21eleq1d 2147 . . 3  |-  ( x  =  g  ->  (
( F `  x
)  e.  _V  <->  ( F `  g )  e.  _V ) )
32anbi2d 451 . 2  |-  ( x  =  g  ->  (
( Fun  F  /\  ( F `  x )  e.  _V )  <->  ( Fun  F  /\  ( F `  g )  e.  _V ) ) )
4 tfrlem3-2.1 . 2  |-  ( Fun 
F  /\  ( F `  x )  e.  _V )
53, 4chvarv 1853 1  |-  ( Fun 
F  /\  ( F `  g )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601   Fun wfun 4916   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator