ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  times2d Unicode version

Theorem times2d 8274
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
times2d  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 times2 8161 . 2  |-  ( A  e.  CC  ->  ( A  x.  2 )  =  ( A  +  A ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979    + caddc 6984    x. cmul 6986   2c2 8089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulcom 7077  ax-mulass 7079  ax-distr 7080  ax-1rid 7083  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535  df-2 8098
This theorem is referenced by:  div4p1lem1div2  8284
  Copyright terms: Public domain W3C validator