| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > div4p1lem1div2 | Unicode version | ||
| Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| div4p1lem1div2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re 8120 |
. . . . . . 7
| |
| 2 | 1 | a1i 9 |
. . . . . 6
|
| 3 | id 19 |
. . . . . 6
| |
| 4 | 2, 3, 3 | leadd2d 7640 |
. . . . 5
|
| 5 | 4 | biimpa 290 |
. . . 4
|
| 6 | recn 7106 |
. . . . . 6
| |
| 7 | 6 | times2d 8274 |
. . . . 5
|
| 8 | 7 | adantr 270 |
. . . 4
|
| 9 | 5, 8 | breqtrrd 3811 |
. . 3
|
| 10 | 4cn 8117 |
. . . . . . . 8
| |
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 2cn 8110 |
. . . . . . . 8
| |
| 13 | 12 | a1i 9 |
. . . . . . 7
|
| 14 | 6, 11, 13 | addassd 7141 |
. . . . . 6
|
| 15 | 4p2e6 8175 |
. . . . . . 7
| |
| 16 | 15 | oveq2i 5543 |
. . . . . 6
|
| 17 | 14, 16 | syl6eq 2129 |
. . . . 5
|
| 18 | 17 | breq1d 3795 |
. . . 4
|
| 19 | 18 | adantr 270 |
. . 3
|
| 20 | 9, 19 | mpbird 165 |
. 2
|
| 21 | 4re 8116 |
. . . . . . . 8
| |
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | 4ap0 8138 |
. . . . . . . 8
| |
| 24 | 23 | a1i 9 |
. . . . . . 7
|
| 25 | 3, 22, 24 | redivclapd 7920 |
. . . . . 6
|
| 26 | peano2re 7244 |
. . . . . 6
| |
| 27 | 25, 26 | syl 14 |
. . . . 5
|
| 28 | peano2rem 7375 |
. . . . . 6
| |
| 29 | 28 | rehalfcld 8277 |
. . . . 5
|
| 30 | 4pos 8136 |
. . . . . . 7
| |
| 31 | 21, 30 | pm3.2i 266 |
. . . . . 6
|
| 32 | 31 | a1i 9 |
. . . . 5
|
| 33 | lemul1 7693 |
. . . . 5
| |
| 34 | 27, 29, 32, 33 | syl3anc 1169 |
. . . 4
|
| 35 | 25 | recnd 7147 |
. . . . . 6
|
| 36 | 1cnd 7135 |
. . . . . 6
| |
| 37 | 6, 11, 24 | divcanap1d 7878 |
. . . . . . 7
|
| 38 | 10 | mulid2i 7122 |
. . . . . . . 8
|
| 39 | 38 | a1i 9 |
. . . . . . 7
|
| 40 | 37, 39 | oveq12d 5550 |
. . . . . 6
|
| 41 | 35, 11, 36, 40 | joinlmuladdmuld 7146 |
. . . . 5
|
| 42 | 2t2e4 8186 |
. . . . . . . . 9
| |
| 43 | 42 | eqcomi 2085 |
. . . . . . . 8
|
| 44 | 43 | a1i 9 |
. . . . . . 7
|
| 45 | 44 | oveq2d 5548 |
. . . . . 6
|
| 46 | 29 | recnd 7147 |
. . . . . . 7
|
| 47 | mulass 7104 |
. . . . . . . 8
| |
| 48 | 47 | eqcomd 2086 |
. . . . . . 7
|
| 49 | 46, 13, 13, 48 | syl3anc 1169 |
. . . . . 6
|
| 50 | 28 | recnd 7147 |
. . . . . . . . 9
|
| 51 | 2ap0 8132 |
. . . . . . . . . 10
| |
| 52 | 51 | a1i 9 |
. . . . . . . . 9
|
| 53 | 50, 13, 52 | divcanap1d 7878 |
. . . . . . . 8
|
| 54 | 53 | oveq1d 5547 |
. . . . . . 7
|
| 55 | 6, 36, 13 | subdird 7519 |
. . . . . . 7
|
| 56 | 12 | mulid2i 7122 |
. . . . . . . . 9
|
| 57 | 56 | a1i 9 |
. . . . . . . 8
|
| 58 | 57 | oveq2d 5548 |
. . . . . . 7
|
| 59 | 54, 55, 58 | 3eqtrd 2117 |
. . . . . 6
|
| 60 | 45, 49, 59 | 3eqtrd 2117 |
. . . . 5
|
| 61 | 41, 60 | breq12d 3798 |
. . . 4
|
| 62 | 3, 22 | readdcld 7148 |
. . . . 5
|
| 63 | 2re 8109 |
. . . . . 6
| |
| 64 | 63 | a1i 9 |
. . . . 5
|
| 65 | 3, 64 | remulcld 7149 |
. . . . 5
|
| 66 | leaddsub 7542 |
. . . . . 6
| |
| 67 | 66 | bicomd 139 |
. . . . 5
|
| 68 | 62, 64, 65, 67 | syl3anc 1169 |
. . . 4
|
| 69 | 34, 61, 68 | 3bitrd 212 |
. . 3
|
| 70 | 69 | adantr 270 |
. 2
|
| 71 | 20, 70 | mpbird 165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-2 8098 df-3 8099 df-4 8100 df-5 8101 df-6 8102 |
| This theorem is referenced by: fldiv4p1lem1div2 9307 |
| Copyright terms: Public domain | W3C validator |