| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trint | Unicode version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
| Ref | Expression |
|---|---|
| trint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 3879 |
. . . . . 6
| |
| 2 | 1 | ralbii 2372 |
. . . . 5
|
| 3 | 2 | biimpi 118 |
. . . 4
|
| 4 | df-ral 2353 |
. . . . . 6
| |
| 5 | 4 | ralbii 2372 |
. . . . 5
|
| 6 | ralcom4 2621 |
. . . . 5
| |
| 7 | 5, 6 | bitri 182 |
. . . 4
|
| 8 | 3, 7 | sylib 120 |
. . 3
|
| 9 | ralim 2422 |
. . . 4
| |
| 10 | 9 | alimi 1384 |
. . 3
|
| 11 | 8, 10 | syl 14 |
. 2
|
| 12 | dftr3 3879 |
. . 3
| |
| 13 | df-ral 2353 |
. . . 4
| |
| 14 | vex 2604 |
. . . . . . 7
| |
| 15 | 14 | elint2 3643 |
. . . . . 6
|
| 16 | ssint 3652 |
. . . . . 6
| |
| 17 | 15, 16 | imbi12i 237 |
. . . . 5
|
| 18 | 17 | albii 1399 |
. . . 4
|
| 19 | 13, 18 | bitri 182 |
. . 3
|
| 20 | 12, 19 | bitri 182 |
. 2
|
| 21 | 11, 20 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-int 3637 df-tr 3876 |
| This theorem is referenced by: onintonm 4261 |
| Copyright terms: Public domain | W3C validator |