| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintonm | Unicode version | ||
| Description: The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintonm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 2993 |
. . . . . . 7
| |
| 2 | eloni 4130 |
. . . . . . . 8
| |
| 3 | ordtr 4133 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl 14 |
. . . . . . 7
|
| 5 | 1, 4 | syl6 33 |
. . . . . 6
|
| 6 | 5 | ralrimiv 2433 |
. . . . 5
|
| 7 | trint 3890 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | 8 | adantr 270 |
. . 3
|
| 10 | nfv 1461 |
. . . . 5
| |
| 11 | nfe1 1425 |
. . . . 5
| |
| 12 | 10, 11 | nfan 1497 |
. . . 4
|
| 13 | intssuni2m 3660 |
. . . . . . . 8
| |
| 14 | unon 4255 |
. . . . . . . 8
| |
| 15 | 13, 14 | syl6sseq 3045 |
. . . . . . 7
|
| 16 | 15 | sseld 2998 |
. . . . . 6
|
| 17 | 16, 2 | syl6 33 |
. . . . 5
|
| 18 | 17, 3 | syl6 33 |
. . . 4
|
| 19 | 12, 18 | ralrimi 2432 |
. . 3
|
| 20 | dford3 4122 |
. . 3
| |
| 21 | 9, 19, 20 | sylanbrc 408 |
. 2
|
| 22 | inteximm 3924 |
. . . 4
| |
| 23 | 22 | adantl 271 |
. . 3
|
| 24 | elong 4128 |
. . 3
| |
| 25 | 23, 24 | syl 14 |
. 2
|
| 26 | 21, 25 | mpbird 165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: onintrab2im 4262 |
| Copyright terms: Public domain | W3C validator |