| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undif3ss | Unicode version | ||
| Description: A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| Ref | Expression |
|---|---|
| undif3ss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3113 |
. . . 4
| |
| 2 | eldif 2982 |
. . . . 5
| |
| 3 | 2 | orbi2i 711 |
. . . 4
|
| 4 | orc 665 |
. . . . . . 7
| |
| 5 | olc 664 |
. . . . . . 7
| |
| 6 | 4, 5 | jca 300 |
. . . . . 6
|
| 7 | olc 664 |
. . . . . . 7
| |
| 8 | orc 665 |
. . . . . . 7
| |
| 9 | 7, 8 | anim12i 331 |
. . . . . 6
|
| 10 | 6, 9 | jaoi 668 |
. . . . 5
|
| 11 | simpl 107 |
. . . . . . 7
| |
| 12 | 11 | orcd 684 |
. . . . . 6
|
| 13 | olc 664 |
. . . . . 6
| |
| 14 | orc 665 |
. . . . . . 7
| |
| 15 | 14 | adantr 270 |
. . . . . 6
|
| 16 | 14 | adantl 271 |
. . . . . 6
|
| 17 | 12, 13, 15, 16 | ccase 905 |
. . . . 5
|
| 18 | 10, 17 | impbii 124 |
. . . 4
|
| 19 | 1, 3, 18 | 3bitri 204 |
. . 3
|
| 20 | elun 3113 |
. . . . . 6
| |
| 21 | 20 | biimpri 131 |
. . . . 5
|
| 22 | pm4.53r 837 |
. . . . . 6
| |
| 23 | eldif 2982 |
. . . . . 6
| |
| 24 | 22, 23 | sylnibr 634 |
. . . . 5
|
| 25 | 21, 24 | anim12i 331 |
. . . 4
|
| 26 | eldif 2982 |
. . . 4
| |
| 27 | 25, 26 | sylibr 132 |
. . 3
|
| 28 | 19, 27 | sylbi 119 |
. 2
|
| 29 | 28 | ssriv 3003 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |