ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssriv Unicode version

Theorem ssriv 3003
Description: Inference rule based on subclass definition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
ssriv.1  |-  ( x  e.  A  ->  x  e.  B )
Assertion
Ref Expression
ssriv  |-  A  C_  B
Distinct variable groups:    x, A    x, B

Proof of Theorem ssriv
StepHypRef Expression
1 dfss2 2988 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
2 ssriv.1 . 2  |-  ( x  e.  A  ->  x  e.  B )
31, 2mpgbir 1382 1  |-  A  C_  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433    C_ wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986
This theorem is referenced by:  ssid  3018  ssv  3019  difss  3098  ssun1  3135  inss1  3186  unssdif  3199  inssdif  3200  unssin  3203  inssun  3204  difindiss  3218  undif3ss  3225  0ss  3282  difprsnss  3524  snsspw  3556  pwprss  3597  pwtpss  3598  uniin  3621  iuniin  3688  iundif2ss  3743  iunpwss  3764  pwuni  3963  pwunss  4038  omsson  4353  limom  4354  xpsspw  4468  dmin  4561  dmrnssfld  4613  dmcoss  4619  dminss  4758  imainss  4759  dmxpss  4773  rnxpid  4775  enq0enq  6621  nqnq0pi  6628  nqnq0  6631  zssre  8358  zsscn  8359  nnssz  8368  uzssz  8638  divfnzn  8706  zssq  8712  qssre  8715  rpssre  8744  ixxssxr  8923  ixxssixx  8925  iooval2  8938  ioossre  8958  rge0ssre  9000  fzssuz  9083  fzssp1  9085  uzdisj  9110  nn0disj  9148  fzossfz  9174  fzouzsplit  9188  fzossnn  9198  fzo0ssnn0  9224  fclim  10133  infssuzcldc  10347  prmssnn  10494  bj-omsson  10757
  Copyright terms: Public domain W3C validator