![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssriv | Unicode version |
Description: Inference rule based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssriv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 2988 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssriv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1382 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-in 2979 df-ss 2986 |
This theorem is referenced by: ssid 3018 ssv 3019 difss 3098 ssun1 3135 inss1 3186 unssdif 3199 inssdif 3200 unssin 3203 inssun 3204 difindiss 3218 undif3ss 3225 0ss 3282 difprsnss 3524 snsspw 3556 pwprss 3597 pwtpss 3598 uniin 3621 iuniin 3688 iundif2ss 3743 iunpwss 3764 pwuni 3963 pwunss 4038 omsson 4353 limom 4354 xpsspw 4468 dmin 4561 dmrnssfld 4613 dmcoss 4619 dminss 4758 imainss 4759 dmxpss 4773 rnxpid 4775 enq0enq 6621 nqnq0pi 6628 nqnq0 6631 zssre 8358 zsscn 8359 nnssz 8368 uzssz 8638 divfnzn 8706 zssq 8712 qssre 8715 rpssre 8744 ixxssxr 8923 ixxssixx 8925 iooval2 8938 ioossre 8958 rge0ssre 9000 fzssuz 9083 fzssp1 9085 uzdisj 9110 nn0disj 9148 fzossfz 9174 fzouzsplit 9188 fzossnn 9198 fzo0ssnn0 9224 fclim 10133 infssuzcldc 10347 prmssnn 10494 bj-omsson 10757 |
Copyright terms: Public domain | W3C validator |