ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifss Unicode version

Theorem undifss 3323
Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undifss  |-  ( A 
C_  B  <->  ( A  u.  ( B  \  A
) )  C_  B
)

Proof of Theorem undifss
StepHypRef Expression
1 difss 3098 . . . 4  |-  ( B 
\  A )  C_  B
21jctr 308 . . 3  |-  ( A 
C_  B  ->  ( A  C_  B  /\  ( B  \  A )  C_  B ) )
3 unss 3146 . . 3  |-  ( ( A  C_  B  /\  ( B  \  A ) 
C_  B )  <->  ( A  u.  ( B  \  A
) )  C_  B
)
42, 3sylib 120 . 2  |-  ( A 
C_  B  ->  ( A  u.  ( B  \  A ) )  C_  B )
5 ssun1 3135 . . 3  |-  A  C_  ( A  u.  ( B  \  A ) )
6 sstr 3007 . . 3  |-  ( ( A  C_  ( A  u.  ( B  \  A
) )  /\  ( A  u.  ( B  \  A ) )  C_  B )  ->  A  C_  B )
75, 6mpan 414 . 2  |-  ( ( A  u.  ( B 
\  A ) ) 
C_  B  ->  A  C_  B )
84, 7impbii 124 1  |-  ( A 
C_  B  <->  ( A  u.  ( B  \  A
) )  C_  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    \ cdif 2970    u. cun 2971    C_ wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986
This theorem is referenced by:  difsnss  3531
  Copyright terms: Public domain W3C validator