ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnss Unicode version

Theorem difsnss 3531
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6103. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
difsnss  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)

Proof of Theorem difsnss
StepHypRef Expression
1 uncom 3116 . 2  |-  ( ( A  \  { B } )  u.  { B } )  =  ( { B }  u.  ( A  \  { B } ) )
2 snssi 3529 . . 3  |-  ( B  e.  A  ->  { B }  C_  A )
3 undifss 3323 . . 3  |-  ( { B }  C_  A  <->  ( { B }  u.  ( A  \  { B } ) )  C_  A )
42, 3sylib 120 . 2  |-  ( B  e.  A  ->  ( { B }  u.  ( A  \  { B }
) )  C_  A
)
51, 4syl5eqss 3043 1  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433    \ cdif 2970    u. cun 2971    C_ wss 2973   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404
This theorem is referenced by:  nndifsnid  6103  fidifsnid  6356
  Copyright terms: Public domain W3C validator