ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipr Unicode version

Theorem unipr 3615
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.)
Hypotheses
Ref Expression
unipr.1  |-  A  e. 
_V
unipr.2  |-  B  e. 
_V
Assertion
Ref Expression
unipr  |-  U. { A ,  B }  =  ( A  u.  B )

Proof of Theorem unipr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1559 . . . 4  |-  ( E. y ( ( x  e.  y  /\  y  =  A )  \/  (
x  e.  y  /\  y  =  B )
)  <->  ( E. y
( x  e.  y  /\  y  =  A )  \/  E. y
( x  e.  y  /\  y  =  B ) ) )
2 vex 2604 . . . . . . . 8  |-  y  e. 
_V
32elpr 3419 . . . . . . 7  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
43anbi2i 444 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  { A ,  B } )  <->  ( x  e.  y  /\  (
y  =  A  \/  y  =  B )
) )
5 andi 764 . . . . . 6  |-  ( ( x  e.  y  /\  ( y  =  A  \/  y  =  B ) )  <->  ( (
x  e.  y  /\  y  =  A )  \/  ( x  e.  y  /\  y  =  B ) ) )
64, 5bitri 182 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  { A ,  B } )  <->  ( (
x  e.  y  /\  y  =  A )  \/  ( x  e.  y  /\  y  =  B ) ) )
76exbii 1536 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
{ A ,  B } )  <->  E. y
( ( x  e.  y  /\  y  =  A )  \/  (
x  e.  y  /\  y  =  B )
) )
8 unipr.1 . . . . . . 7  |-  A  e. 
_V
98clel3 2730 . . . . . 6  |-  ( x  e.  A  <->  E. y
( y  =  A  /\  x  e.  y ) )
10 exancom 1539 . . . . . 6  |-  ( E. y ( y  =  A  /\  x  e.  y )  <->  E. y
( x  e.  y  /\  y  =  A ) )
119, 10bitri 182 . . . . 5  |-  ( x  e.  A  <->  E. y
( x  e.  y  /\  y  =  A ) )
12 unipr.2 . . . . . . 7  |-  B  e. 
_V
1312clel3 2730 . . . . . 6  |-  ( x  e.  B  <->  E. y
( y  =  B  /\  x  e.  y ) )
14 exancom 1539 . . . . . 6  |-  ( E. y ( y  =  B  /\  x  e.  y )  <->  E. y
( x  e.  y  /\  y  =  B ) )
1513, 14bitri 182 . . . . 5  |-  ( x  e.  B  <->  E. y
( x  e.  y  /\  y  =  B ) )
1611, 15orbi12i 713 . . . 4  |-  ( ( x  e.  A  \/  x  e.  B )  <->  ( E. y ( x  e.  y  /\  y  =  A )  \/  E. y ( x  e.  y  /\  y  =  B ) ) )
171, 7, 163bitr4ri 211 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) )
1817abbii 2194 . 2  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { x  |  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) }
19 df-un 2977 . 2  |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
20 df-uni 3602 . 2  |-  U. { A ,  B }  =  { x  |  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) }
2118, 19, 203eqtr4ri 2112 1  |-  U. { A ,  B }  =  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    \/ wo 661    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   _Vcvv 2601    u. cun 2971   {cpr 3399   U.cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602
This theorem is referenced by:  uniprg  3616  unisn  3617  uniop  4010  unex  4194  bj-unex  10710
  Copyright terms: Public domain W3C validator