| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unipr | Unicode version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| unipr.1 |
|
| unipr.2 |
|
| Ref | Expression |
|---|---|
| unipr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1559 |
. . . 4
| |
| 2 | vex 2604 |
. . . . . . . 8
| |
| 3 | 2 | elpr 3419 |
. . . . . . 7
|
| 4 | 3 | anbi2i 444 |
. . . . . 6
|
| 5 | andi 764 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 182 |
. . . . 5
|
| 7 | 6 | exbii 1536 |
. . . 4
|
| 8 | unipr.1 |
. . . . . . 7
| |
| 9 | 8 | clel3 2730 |
. . . . . 6
|
| 10 | exancom 1539 |
. . . . . 6
| |
| 11 | 9, 10 | bitri 182 |
. . . . 5
|
| 12 | unipr.2 |
. . . . . . 7
| |
| 13 | 12 | clel3 2730 |
. . . . . 6
|
| 14 | exancom 1539 |
. . . . . 6
| |
| 15 | 13, 14 | bitri 182 |
. . . . 5
|
| 16 | 11, 15 | orbi12i 713 |
. . . 4
|
| 17 | 1, 7, 16 | 3bitr4ri 211 |
. . 3
|
| 18 | 17 | abbii 2194 |
. 2
|
| 19 | df-un 2977 |
. 2
| |
| 20 | df-uni 3602 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4ri 2112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 |
| This theorem is referenced by: uniprg 3616 unisn 3617 uniop 4010 unex 4194 bj-unex 10710 |
| Copyright terms: Public domain | W3C validator |