![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi12i | Unicode version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
orbi12i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | orbi2i 711 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | orbi12i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | orbi1i 712 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 182 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: andir 765 anddi 767 dcbii 780 3orbi123i 1128 3or6 1254 excxor 1309 19.33b2 1560 sbequilem 1759 sborv 1811 sbor 1869 r19.43 2512 rexun 3152 indi 3211 difindiss 3218 symdifxor 3230 unab 3231 dfpr2 3417 rabrsndc 3460 pwprss 3597 pwtpss 3598 unipr 3615 uniun 3620 iunun 3755 iunxun 3756 brun 3831 pwunss 4038 ordsoexmid 4305 onintexmid 4315 opthprc 4409 cnvsom 4881 ftpg 5368 tpostpos 5902 ltexprlemloc 6797 axpre-ltwlin 7049 axpre-apti 7051 axpre-mulext 7054 fz01or 10278 gcdsupex 10349 gcdsupcl 10350 |
Copyright terms: Public domain | W3C validator |